rnn_numpy.py 19.2 KB
Newer Older
F
Feiyu Chan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import math


class LayerMixin(object):
    def __call__(self, *args, **kwargs):
        return self.forward(*args, **kwargs)


class LayerListMixin(LayerMixin):
    def __init__(self, layers=None):
        self._layers = list(layers) if layers else []

    def append(self, layer):
        self._layers.append(layer)

    def __iter__(self):
        return iter(self._layers)


class SimpleRNNCell(LayerMixin):
36 37 38 39 40 41
    def __init__(self,
                 input_size,
                 hidden_size,
                 bias=True,
                 nonlinearity="RNN_TANH",
                 dtype="float64"):
F
Feiyu Chan 已提交
42 43 44
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.bias = bias
45
        if nonlinearity == 'RNN_TANH':
F
Feiyu Chan 已提交
46 47 48 49 50 51 52
            self.nonlinearity = np.tanh
        else:
            self.nonlinearity = lambda x: np.maximum(x, 0.)

        self.parameters = dict()
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = np.random.uniform(-std, std, (
53
            hidden_size, input_size)).astype(dtype)
F
Feiyu Chan 已提交
54
        self.weight_hh = np.random.uniform(-std, std, (
55
            hidden_size, hidden_size)).astype(dtype)
F
Feiyu Chan 已提交
56 57 58 59
        self.parameters['weight_ih'] = self.weight_ih
        self.parameters['weight_hh'] = self.weight_hh
        if bias:
            self.bias_ih = np.random.uniform(-std, std,
60
                                             (hidden_size, )).astype(dtype)
F
Feiyu Chan 已提交
61
            self.bias_hh = np.random.uniform(-std, std,
62
                                             (hidden_size, )).astype(dtype)
F
Feiyu Chan 已提交
63 64 65 66 67 68
            self.parameters['bias_ih'] = self.bias_ih
            self.parameters['bias_hh'] = self.bias_hh
        else:
            self.bias_ih = None
            self.bias_hh = None

69 70
    def init_state(self, inputs, batch_dim_index=0):
        batch_size = inputs.shape[batch_dim_index]
F
Feiyu Chan 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
        return np.zeros((batch_size, self.hidden_size), dtype=inputs.dtype)

    def forward(self, inputs, hx=None):
        if hx is None:
            hx = self.init_state(inputs)
        pre_h = hx
        i2h = np.matmul(inputs, self.weight_ih.T)
        if self.bias_ih is not None:
            i2h += self.bias_ih
        h2h = np.matmul(pre_h, self.weight_hh.T)
        if self.bias_hh is not None:
            h2h += self.bias_hh
        h = self.nonlinearity(i2h + h2h)
        return h, h


class GRUCell(LayerMixin):
88
    def __init__(self, input_size, hidden_size, bias=True, dtype="float64"):
F
Feiyu Chan 已提交
89 90 91 92 93 94
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.bias = bias
        self.parameters = dict()
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = np.random.uniform(-std, std, (
95
            3 * hidden_size, input_size)).astype(dtype)
F
Feiyu Chan 已提交
96
        self.weight_hh = np.random.uniform(-std, std, (
97
            3 * hidden_size, hidden_size)).astype(dtype)
F
Feiyu Chan 已提交
98 99 100
        self.parameters['weight_ih'] = self.weight_ih
        self.parameters['weight_hh'] = self.weight_hh
        if bias:
101 102 103 104
            self.bias_ih = np.random.uniform(-std, std,
                                             (3 * hidden_size)).astype(dtype)
            self.bias_hh = np.random.uniform(-std, std,
                                             (3 * hidden_size)).astype(dtype)
F
Feiyu Chan 已提交
105 106 107 108 109 110
            self.parameters['bias_ih'] = self.bias_ih
            self.parameters['bias_hh'] = self.bias_hh
        else:
            self.bias_ih = None
            self.bias_hh = None

111 112
    def init_state(self, inputs, batch_dim_index=0):
        batch_size = inputs.shape[batch_dim_index]
F
Feiyu Chan 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
        return np.zeros((batch_size, self.hidden_size), dtype=inputs.dtype)

    def forward(self, inputs, hx=None):
        if hx is None:
            hx = self.init_state(inputs)
        pre_hidden = hx
        x_gates = np.matmul(inputs, self.weight_ih.T)
        if self.bias_ih is not None:
            x_gates = x_gates + self.bias_ih
        h_gates = np.matmul(pre_hidden, self.weight_hh.T)
        if self.bias_hh is not None:
            h_gates = h_gates + self.bias_hh
        x_r, x_z, x_c = np.split(x_gates, 3, 1)
        h_r, h_z, h_c = np.split(h_gates, 3, 1)

        r = 1.0 / (1.0 + np.exp(-(x_r + h_r)))
        z = 1.0 / (1.0 + np.exp(-(x_z + h_z)))
        c = np.tanh(x_c + r * h_c)  # apply reset gate after mm
        h = (pre_hidden - c) * z + c
        return h, h


class LSTMCell(LayerMixin):
136
    def __init__(self, input_size, hidden_size, bias=True, dtype="float64"):
F
Feiyu Chan 已提交
137 138 139 140 141 142
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.bias = bias
        self.parameters = dict()
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = np.random.uniform(-std, std, (
143
            4 * hidden_size, input_size)).astype(dtype)
F
Feiyu Chan 已提交
144
        self.weight_hh = np.random.uniform(-std, std, (
145
            4 * hidden_size, hidden_size)).astype(dtype)
F
Feiyu Chan 已提交
146 147 148
        self.parameters['weight_ih'] = self.weight_ih
        self.parameters['weight_hh'] = self.weight_hh
        if bias:
149 150 151 152
            self.bias_ih = np.random.uniform(-std, std,
                                             (4 * hidden_size)).astype(dtype)
            self.bias_hh = np.random.uniform(-std, std,
                                             (4 * hidden_size)).astype(dtype)
F
Feiyu Chan 已提交
153 154 155 156 157 158
            self.parameters['bias_ih'] = self.bias_ih
            self.parameters['bias_hh'] = self.bias_hh
        else:
            self.bias_ih = None
            self.bias_hh = None

159 160
    def init_state(self, inputs, batch_dim_index=0):
        batch_size = inputs.shape[batch_dim_index]
F
Feiyu Chan 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        init_h = np.zeros((batch_size, self.hidden_size), dtype=inputs.dtype)
        init_c = np.zeros((batch_size, self.hidden_size), dtype=inputs.dtype)
        return init_h, init_c

    def forward(self, inputs, hx=None):
        if hx is None:
            hx = self.init_state(inputs)
        pre_hidden, pre_cell = hx
        gates = np.matmul(inputs, self.weight_ih.T)
        if self.bias_ih is not None:
            gates = gates + self.bias_ih
        gates += np.matmul(pre_hidden, self.weight_hh.T)
        if self.bias_hh is not None:
            gates = gates + self.bias_hh

        chunked_gates = np.split(gates, 4, -1)

        i = 1.0 / (1.0 + np.exp(-chunked_gates[0]))
        f = 1.0 / (1.0 + np.exp(-chunked_gates[1]))
        o = 1.0 / (1.0 + np.exp(-chunked_gates[3]))
        c = f * pre_cell + i * np.tanh(chunked_gates[2])
        h = o * np.tanh(c)

        return h, (h, c)


def sequence_mask(lengths, max_len=None):
    if max_len is None:
        max_len = np.max(lengths)
    else:
        assert max_len >= np.max(lengths)
    return np.arange(max_len) < np.expand_dims(lengths, -1)


def update_state(mask, new, old):
    if not isinstance(old, (tuple, list)):
        return np.where(mask, new, old)
    else:
        return tuple(map(lambda x, y: np.where(mask, x, y), new, old))


def rnn(cell,
        inputs,
        initial_states,
        sequence_length=None,
        time_major=False,
        is_reverse=False):
    if not time_major:
        inputs = np.transpose(inputs, [1, 0, 2])
    if is_reverse:
        inputs = np.flip(inputs, 0)

213 214 215
    if initial_states is None:
        initial_states = cell.init_state(inputs, 1)

F
Feiyu Chan 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
    if sequence_length is None:
        mask = None
    else:
        mask = np.transpose(sequence_mask(sequence_length), [1, 0])
        mask = np.expand_dims(mask, -1)
        if is_reverse:
            mask = np.flip(mask, 0)

    time_steps = inputs.shape[0]
    state = initial_states
    outputs = []
    for t in range(time_steps):
        x_t = inputs[t]
        if mask is not None:
            m_t = mask[t]
            y, new_state = cell(x_t, state)
            y = np.where(m_t, y, 0.)
            outputs.append(y)
            state = update_state(m_t, new_state, state)
        else:
            y, new_state = cell(x_t, state)
            outputs.append(y)
            state = new_state

    outputs = np.stack(outputs)
    final_state = state

    if is_reverse:
        outputs = np.flip(outputs, 0)
    if not time_major:
        outputs = np.transpose(outputs, [1, 0, 2])
    return outputs, final_state


def birnn(cell_fw,
          cell_bw,
          inputs,
          initial_states,
          sequence_length=None,
          time_major=False):
    states_fw, states_bw = initial_states
    outputs_fw, states_fw = rnn(cell_fw,
                                inputs,
                                states_fw,
                                sequence_length,
                                time_major=time_major)

    outputs_bw, states_bw = rnn(cell_bw,
                                inputs,
                                states_bw,
                                sequence_length,
                                time_major=time_major,
                                is_reverse=True)

    outputs = np.concatenate((outputs_fw, outputs_bw), -1)
    final_states = (states_fw, states_bw)
    return outputs, final_states


def flatten(nested):
    return list(_flatten(nested))


def _flatten(nested):
    for item in nested:
        if isinstance(item, (list, tuple)):
            for subitem in _flatten(item):
                yield subitem
        else:
            yield item


def unstack(array, axis=0):
    num = array.shape[axis]
    sub_arrays = np.split(array, num, axis)
    return [np.squeeze(sub_array, axis) for sub_array in sub_arrays]


def dropout(array, p=0.5):
    if p == 0.0:
        return array
    mask = (np.random.uniform(size=array.shape) < (1 - p)).astype(array.dtype)
    return array * (mask / (1 - p))


def split_states(states, bidirectional=False, state_components=1):
    if state_components == 1:
        states = unstack(states)
        if not bidirectional:
            return states
        else:
            return list(zip(states[::2], states[1::2]))
    else:
        assert len(states) == state_components
        states = tuple([unstack(item) for item in states])
        if not bidirectional:
            return list(zip(*states))
        else:
            states = list(zip(*states))
            return list(zip(states[::2], states[1::2]))


def concat_states(states, bidirectional=False, state_components=1):
    if state_components == 1:
        return np.stack(flatten(states))
    else:
        states = flatten(states)
        componnets = []
        for i in range(state_components):
            componnets.append(states[i::state_components])
        return [np.stack(item) for item in componnets]


class RNN(LayerMixin):
    def __init__(self, cell, is_reverse=False, time_major=False):
        super(RNN, self).__init__()
        self.cell = cell
        if not hasattr(self.cell, "call"):
            # for non-dygraph mode, `rnn` api uses cell.call
            self.cell.call = self.cell.forward
        self.is_reverse = is_reverse
        self.time_major = time_major

    def forward(self, inputs, initial_states=None, sequence_length=None):
        final_outputs, final_states = rnn(self.cell,
                                          inputs,
                                          initial_states=initial_states,
                                          sequence_length=sequence_length,
                                          time_major=self.time_major,
                                          is_reverse=self.is_reverse)
        return final_outputs, final_states


class BiRNN(LayerMixin):
    def __init__(self, cell_fw, cell_bw, time_major=False):
        super(BiRNN, self).__init__()
        self.cell_fw = cell_fw
        self.cell_bw = cell_bw
        self.time_major = time_major

    def forward(self,
                inputs,
                initial_states=None,
                sequence_length=None,
                **kwargs):
        if isinstance(initial_states, (list, tuple)):
            assert len(initial_states) == 2, \
                "length of initial_states should be 2 when it is a list/tuple"
        else:
            initial_states = [initial_states, initial_states]

        outputs, final_states = birnn(self.cell_fw, self.cell_bw, inputs,
                                      initial_states, sequence_length,
                                      self.time_major)
        return outputs, final_states


class RNNMixin(LayerListMixin):
    def forward(self, inputs, initial_states=None, sequence_length=None):
        batch_index = 1 if self.time_major else 0
        batch_size = inputs.shape[batch_index]
        dtype = inputs.dtype
        if initial_states is None:
            state_shape = (self.num_layers * self.num_directions, batch_size,
                           self.hidden_size)
            if self.state_components == 1:
                initial_states = np.zeros(state_shape, dtype)
            else:
                initial_states = tuple([
                    np.zeros(state_shape, dtype)
                    for _ in range(self.state_components)
                ])

        states = split_states(initial_states, self.num_directions == 2,
                              self.state_components)
        final_states = []
392
        input_temp = inputs
F
Feiyu Chan 已提交
393 394
        for i, rnn_layer in enumerate(self):
            if i > 0:
395 396 397
                input_temp = dropout(inputs, self.dropout)
            outputs, final_state = rnn_layer(input_temp, states[i],
                                             sequence_length)
F
Feiyu Chan 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410
            final_states.append(final_state)
            inputs = outputs

        final_states = concat_states(final_states, self.num_directions == 2,
                                     self.state_components)
        return outputs, final_states


class SimpleRNN(RNNMixin):
    def __init__(self,
                 input_size,
                 hidden_size,
                 num_layers=1,
411
                 nonlinearity="RNN_TANH",
F
Feiyu Chan 已提交
412 413
                 direction="forward",
                 dropout=0.,
414 415
                 time_major=False,
                 dtype="float64"):
F
Feiyu Chan 已提交
416 417 418 419
        super(SimpleRNN, self).__init__()

        if direction in ["forward", "backward"]:
            is_reverse = direction == "backward"
420 421
            cell = SimpleRNNCell(
                input_size, hidden_size, nonlinearity=nonlinearity, dtype=dtype)
F
Feiyu Chan 已提交
422 423
            self.append(RNN(cell, is_reverse, time_major))
            for i in range(1, num_layers):
424 425 426 427 428
                cell = SimpleRNNCell(
                    hidden_size,
                    hidden_size,
                    nonlinearity=nonlinearity,
                    dtype=dtype)
F
Feiyu Chan 已提交
429 430
                self.append(RNN(cell, is_reverse, time_major))
        elif direction == "bidirectional":
431 432 433 434
            cell_fw = SimpleRNNCell(
                input_size, hidden_size, nonlinearity=nonlinearity, dtype=dtype)
            cell_bw = SimpleRNNCell(
                input_size, hidden_size, nonlinearity=nonlinearity, dtype=dtype)
F
Feiyu Chan 已提交
435 436
            self.append(BiRNN(cell_fw, cell_bw, time_major))
            for i in range(1, num_layers):
437 438 439 440
                cell_fw = SimpleRNNCell(
                    2 * hidden_size, hidden_size, nonlinearity, dtype=dtype)
                cell_bw = SimpleRNNCell(
                    2 * hidden_size, hidden_size, nonlinearity, dtype=dtype)
F
Feiyu Chan 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
                self.append(BiRNN(cell_fw, cell_bw, time_major))
        else:
            raise ValueError(
                "direction should be forward, backward or bidirectional, "
                "received direction = {}".format(direction))

        self.input_size = input_size
        self.hidden_size = hidden_size
        self.dropout = dropout
        self.num_directions = 2 if direction == "bidirectional" else 1
        self.time_major = time_major
        self.num_layers = num_layers
        self.state_components = 1


class LSTM(RNNMixin):
    def __init__(self,
                 input_size,
                 hidden_size,
                 num_layers=1,
                 direction="forward",
                 dropout=0.,
463 464
                 time_major=False,
                 dtype="float64"):
F
Feiyu Chan 已提交
465 466 467 468
        super(LSTM, self).__init__()

        if direction in ["forward", "backward"]:
            is_reverse = direction == "backward"
469
            cell = LSTMCell(input_size, hidden_size, dtype=dtype)
F
Feiyu Chan 已提交
470 471
            self.append(RNN(cell, is_reverse, time_major))
            for i in range(1, num_layers):
472
                cell = LSTMCell(hidden_size, hidden_size, dtype=dtype)
F
Feiyu Chan 已提交
473 474
                self.append(RNN(cell, is_reverse, time_major))
        elif direction == "bidirectional":
475 476
            cell_fw = LSTMCell(input_size, hidden_size, dtype=dtype)
            cell_bw = LSTMCell(input_size, hidden_size, dtype=dtype)
F
Feiyu Chan 已提交
477 478
            self.append(BiRNN(cell_fw, cell_bw, time_major))
            for i in range(1, num_layers):
479 480
                cell_fw = LSTMCell(2 * hidden_size, hidden_size, dtype=dtype)
                cell_bw = LSTMCell(2 * hidden_size, hidden_size, dtype=dtype)
F
Feiyu Chan 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
                self.append(BiRNN(cell_fw, cell_bw, time_major))
        else:
            raise ValueError(
                "direction should be forward, backward or bidirectional, "
                "received direction = {}".format(direction))

        self.input_size = input_size
        self.hidden_size = hidden_size
        self.dropout = dropout
        self.num_directions = 2 if direction == "bidirectional" else 1
        self.time_major = time_major
        self.num_layers = num_layers
        self.state_components = 2


class GRU(RNNMixin):
    def __init__(self,
                 input_size,
                 hidden_size,
                 num_layers=1,
                 direction="forward",
                 dropout=0.,
503 504
                 time_major=False,
                 dtype="float64"):
F
Feiyu Chan 已提交
505 506 507 508
        super(GRU, self).__init__()

        if direction in ["forward", "backward"]:
            is_reverse = direction == "backward"
509
            cell = GRUCell(input_size, hidden_size, dtype=dtype)
F
Feiyu Chan 已提交
510 511
            self.append(RNN(cell, is_reverse, time_major))
            for i in range(1, num_layers):
512
                cell = GRUCell(hidden_size, hidden_size, dtype=dtype)
F
Feiyu Chan 已提交
513 514
                self.append(RNN(cell, is_reverse, time_major))
        elif direction == "bidirectional":
515 516
            cell_fw = GRUCell(input_size, hidden_size, dtype=dtype)
            cell_bw = GRUCell(input_size, hidden_size, dtype=dtype)
F
Feiyu Chan 已提交
517 518
            self.append(BiRNN(cell_fw, cell_bw, time_major))
            for i in range(1, num_layers):
519 520
                cell_fw = GRUCell(2 * hidden_size, hidden_size, dtype=dtype)
                cell_bw = GRUCell(2 * hidden_size, hidden_size, dtype=dtype)
F
Feiyu Chan 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533
                self.append(BiRNN(cell_fw, cell_bw, time_major))
        else:
            raise ValueError(
                "direction should be forward, backward or bidirectional, "
                "received direction = {}".format(direction))

        self.input_size = input_size
        self.hidden_size = hidden_size
        self.dropout = dropout
        self.num_directions = 2 if direction == "bidirectional" else 1
        self.time_major = time_major
        self.num_layers = num_layers
        self.state_components = 1