# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import math class LayerMixin(object): def __call__(self, *args, **kwargs): return self.forward(*args, **kwargs) class LayerListMixin(LayerMixin): def __init__(self, layers=None): self._layers = list(layers) if layers else [] def append(self, layer): self._layers.append(layer) def __iter__(self): return iter(self._layers) class SimpleRNNCell(LayerMixin): def __init__(self, input_size, hidden_size, bias=True, nonlinearity="RNN_TANH", dtype="float64"): self.input_size = input_size self.hidden_size = hidden_size self.bias = bias if nonlinearity == 'RNN_TANH': self.nonlinearity = np.tanh else: self.nonlinearity = lambda x: np.maximum(x, 0.) self.parameters = dict() std = 1.0 / math.sqrt(hidden_size) self.weight_ih = np.random.uniform(-std, std, ( hidden_size, input_size)).astype(dtype) self.weight_hh = np.random.uniform(-std, std, ( hidden_size, hidden_size)).astype(dtype) self.parameters['weight_ih'] = self.weight_ih self.parameters['weight_hh'] = self.weight_hh if bias: self.bias_ih = np.random.uniform(-std, std, (hidden_size, )).astype(dtype) self.bias_hh = np.random.uniform(-std, std, (hidden_size, )).astype(dtype) self.parameters['bias_ih'] = self.bias_ih self.parameters['bias_hh'] = self.bias_hh else: self.bias_ih = None self.bias_hh = None def init_state(self, inputs, batch_dim_index=0): batch_size = inputs.shape[batch_dim_index] return np.zeros((batch_size, self.hidden_size), dtype=inputs.dtype) def forward(self, inputs, hx=None): if hx is None: hx = self.init_state(inputs) pre_h = hx i2h = np.matmul(inputs, self.weight_ih.T) if self.bias_ih is not None: i2h += self.bias_ih h2h = np.matmul(pre_h, self.weight_hh.T) if self.bias_hh is not None: h2h += self.bias_hh h = self.nonlinearity(i2h + h2h) return h, h class GRUCell(LayerMixin): def __init__(self, input_size, hidden_size, bias=True, dtype="float64"): self.input_size = input_size self.hidden_size = hidden_size self.bias = bias self.parameters = dict() std = 1.0 / math.sqrt(hidden_size) self.weight_ih = np.random.uniform(-std, std, ( 3 * hidden_size, input_size)).astype(dtype) self.weight_hh = np.random.uniform(-std, std, ( 3 * hidden_size, hidden_size)).astype(dtype) self.parameters['weight_ih'] = self.weight_ih self.parameters['weight_hh'] = self.weight_hh if bias: self.bias_ih = np.random.uniform(-std, std, (3 * hidden_size)).astype(dtype) self.bias_hh = np.random.uniform(-std, std, (3 * hidden_size)).astype(dtype) self.parameters['bias_ih'] = self.bias_ih self.parameters['bias_hh'] = self.bias_hh else: self.bias_ih = None self.bias_hh = None def init_state(self, inputs, batch_dim_index=0): batch_size = inputs.shape[batch_dim_index] return np.zeros((batch_size, self.hidden_size), dtype=inputs.dtype) def forward(self, inputs, hx=None): if hx is None: hx = self.init_state(inputs) pre_hidden = hx x_gates = np.matmul(inputs, self.weight_ih.T) if self.bias_ih is not None: x_gates = x_gates + self.bias_ih h_gates = np.matmul(pre_hidden, self.weight_hh.T) if self.bias_hh is not None: h_gates = h_gates + self.bias_hh x_r, x_z, x_c = np.split(x_gates, 3, 1) h_r, h_z, h_c = np.split(h_gates, 3, 1) r = 1.0 / (1.0 + np.exp(-(x_r + h_r))) z = 1.0 / (1.0 + np.exp(-(x_z + h_z))) c = np.tanh(x_c + r * h_c) # apply reset gate after mm h = (pre_hidden - c) * z + c return h, h class LSTMCell(LayerMixin): def __init__(self, input_size, hidden_size, bias=True, dtype="float64"): self.input_size = input_size self.hidden_size = hidden_size self.bias = bias self.parameters = dict() std = 1.0 / math.sqrt(hidden_size) self.weight_ih = np.random.uniform(-std, std, ( 4 * hidden_size, input_size)).astype(dtype) self.weight_hh = np.random.uniform(-std, std, ( 4 * hidden_size, hidden_size)).astype(dtype) self.parameters['weight_ih'] = self.weight_ih self.parameters['weight_hh'] = self.weight_hh if bias: self.bias_ih = np.random.uniform(-std, std, (4 * hidden_size)).astype(dtype) self.bias_hh = np.random.uniform(-std, std, (4 * hidden_size)).astype(dtype) self.parameters['bias_ih'] = self.bias_ih self.parameters['bias_hh'] = self.bias_hh else: self.bias_ih = None self.bias_hh = None def init_state(self, inputs, batch_dim_index=0): batch_size = inputs.shape[batch_dim_index] init_h = np.zeros((batch_size, self.hidden_size), dtype=inputs.dtype) init_c = np.zeros((batch_size, self.hidden_size), dtype=inputs.dtype) return init_h, init_c def forward(self, inputs, hx=None): if hx is None: hx = self.init_state(inputs) pre_hidden, pre_cell = hx gates = np.matmul(inputs, self.weight_ih.T) if self.bias_ih is not None: gates = gates + self.bias_ih gates += np.matmul(pre_hidden, self.weight_hh.T) if self.bias_hh is not None: gates = gates + self.bias_hh chunked_gates = np.split(gates, 4, -1) i = 1.0 / (1.0 + np.exp(-chunked_gates[0])) f = 1.0 / (1.0 + np.exp(-chunked_gates[1])) o = 1.0 / (1.0 + np.exp(-chunked_gates[3])) c = f * pre_cell + i * np.tanh(chunked_gates[2]) h = o * np.tanh(c) return h, (h, c) def sequence_mask(lengths, max_len=None): if max_len is None: max_len = np.max(lengths) else: assert max_len >= np.max(lengths) return np.arange(max_len) < np.expand_dims(lengths, -1) def update_state(mask, new, old): if not isinstance(old, (tuple, list)): return np.where(mask, new, old) else: return tuple(map(lambda x, y: np.where(mask, x, y), new, old)) def rnn(cell, inputs, initial_states, sequence_length=None, time_major=False, is_reverse=False): if not time_major: inputs = np.transpose(inputs, [1, 0, 2]) if is_reverse: inputs = np.flip(inputs, 0) if initial_states is None: initial_states = cell.init_state(inputs, 1) if sequence_length is None: mask = None else: mask = np.transpose(sequence_mask(sequence_length), [1, 0]) mask = np.expand_dims(mask, -1) if is_reverse: mask = np.flip(mask, 0) time_steps = inputs.shape[0] state = initial_states outputs = [] for t in range(time_steps): x_t = inputs[t] if mask is not None: m_t = mask[t] y, new_state = cell(x_t, state) y = np.where(m_t, y, 0.) outputs.append(y) state = update_state(m_t, new_state, state) else: y, new_state = cell(x_t, state) outputs.append(y) state = new_state outputs = np.stack(outputs) final_state = state if is_reverse: outputs = np.flip(outputs, 0) if not time_major: outputs = np.transpose(outputs, [1, 0, 2]) return outputs, final_state def birnn(cell_fw, cell_bw, inputs, initial_states, sequence_length=None, time_major=False): states_fw, states_bw = initial_states outputs_fw, states_fw = rnn(cell_fw, inputs, states_fw, sequence_length, time_major=time_major) outputs_bw, states_bw = rnn(cell_bw, inputs, states_bw, sequence_length, time_major=time_major, is_reverse=True) outputs = np.concatenate((outputs_fw, outputs_bw), -1) final_states = (states_fw, states_bw) return outputs, final_states def flatten(nested): return list(_flatten(nested)) def _flatten(nested): for item in nested: if isinstance(item, (list, tuple)): for subitem in _flatten(item): yield subitem else: yield item def unstack(array, axis=0): num = array.shape[axis] sub_arrays = np.split(array, num, axis) return [np.squeeze(sub_array, axis) for sub_array in sub_arrays] def dropout(array, p=0.5): if p == 0.0: return array mask = (np.random.uniform(size=array.shape) < (1 - p)).astype(array.dtype) return array * (mask / (1 - p)) def split_states(states, bidirectional=False, state_components=1): if state_components == 1: states = unstack(states) if not bidirectional: return states else: return list(zip(states[::2], states[1::2])) else: assert len(states) == state_components states = tuple([unstack(item) for item in states]) if not bidirectional: return list(zip(*states)) else: states = list(zip(*states)) return list(zip(states[::2], states[1::2])) def concat_states(states, bidirectional=False, state_components=1): if state_components == 1: return np.stack(flatten(states)) else: states = flatten(states) componnets = [] for i in range(state_components): componnets.append(states[i::state_components]) return [np.stack(item) for item in componnets] class RNN(LayerMixin): def __init__(self, cell, is_reverse=False, time_major=False): super(RNN, self).__init__() self.cell = cell if not hasattr(self.cell, "call"): # for non-dygraph mode, `rnn` api uses cell.call self.cell.call = self.cell.forward self.is_reverse = is_reverse self.time_major = time_major def forward(self, inputs, initial_states=None, sequence_length=None): final_outputs, final_states = rnn(self.cell, inputs, initial_states=initial_states, sequence_length=sequence_length, time_major=self.time_major, is_reverse=self.is_reverse) return final_outputs, final_states class BiRNN(LayerMixin): def __init__(self, cell_fw, cell_bw, time_major=False): super(BiRNN, self).__init__() self.cell_fw = cell_fw self.cell_bw = cell_bw self.time_major = time_major def forward(self, inputs, initial_states=None, sequence_length=None, **kwargs): if isinstance(initial_states, (list, tuple)): assert len(initial_states) == 2, \ "length of initial_states should be 2 when it is a list/tuple" else: initial_states = [initial_states, initial_states] outputs, final_states = birnn(self.cell_fw, self.cell_bw, inputs, initial_states, sequence_length, self.time_major) return outputs, final_states class RNNMixin(LayerListMixin): def forward(self, inputs, initial_states=None, sequence_length=None): batch_index = 1 if self.time_major else 0 batch_size = inputs.shape[batch_index] dtype = inputs.dtype if initial_states is None: state_shape = (self.num_layers * self.num_directions, batch_size, self.hidden_size) if self.state_components == 1: initial_states = np.zeros(state_shape, dtype) else: initial_states = tuple([ np.zeros(state_shape, dtype) for _ in range(self.state_components) ]) states = split_states(initial_states, self.num_directions == 2, self.state_components) final_states = [] input_temp = inputs for i, rnn_layer in enumerate(self): if i > 0: input_temp = dropout(inputs, self.dropout) outputs, final_state = rnn_layer(input_temp, states[i], sequence_length) final_states.append(final_state) inputs = outputs final_states = concat_states(final_states, self.num_directions == 2, self.state_components) return outputs, final_states class SimpleRNN(RNNMixin): def __init__(self, input_size, hidden_size, num_layers=1, nonlinearity="RNN_TANH", direction="forward", dropout=0., time_major=False, dtype="float64"): super(SimpleRNN, self).__init__() if direction in ["forward", "backward"]: is_reverse = direction == "backward" cell = SimpleRNNCell( input_size, hidden_size, nonlinearity=nonlinearity, dtype=dtype) self.append(RNN(cell, is_reverse, time_major)) for i in range(1, num_layers): cell = SimpleRNNCell( hidden_size, hidden_size, nonlinearity=nonlinearity, dtype=dtype) self.append(RNN(cell, is_reverse, time_major)) elif direction == "bidirectional": cell_fw = SimpleRNNCell( input_size, hidden_size, nonlinearity=nonlinearity, dtype=dtype) cell_bw = SimpleRNNCell( input_size, hidden_size, nonlinearity=nonlinearity, dtype=dtype) self.append(BiRNN(cell_fw, cell_bw, time_major)) for i in range(1, num_layers): cell_fw = SimpleRNNCell( 2 * hidden_size, hidden_size, nonlinearity, dtype=dtype) cell_bw = SimpleRNNCell( 2 * hidden_size, hidden_size, nonlinearity, dtype=dtype) self.append(BiRNN(cell_fw, cell_bw, time_major)) else: raise ValueError( "direction should be forward, backward or bidirectional, " "received direction = {}".format(direction)) self.input_size = input_size self.hidden_size = hidden_size self.dropout = dropout self.num_directions = 2 if direction == "bidirectional" else 1 self.time_major = time_major self.num_layers = num_layers self.state_components = 1 class LSTM(RNNMixin): def __init__(self, input_size, hidden_size, num_layers=1, direction="forward", dropout=0., time_major=False, dtype="float64"): super(LSTM, self).__init__() if direction in ["forward", "backward"]: is_reverse = direction == "backward" cell = LSTMCell(input_size, hidden_size, dtype=dtype) self.append(RNN(cell, is_reverse, time_major)) for i in range(1, num_layers): cell = LSTMCell(hidden_size, hidden_size, dtype=dtype) self.append(RNN(cell, is_reverse, time_major)) elif direction == "bidirectional": cell_fw = LSTMCell(input_size, hidden_size, dtype=dtype) cell_bw = LSTMCell(input_size, hidden_size, dtype=dtype) self.append(BiRNN(cell_fw, cell_bw, time_major)) for i in range(1, num_layers): cell_fw = LSTMCell(2 * hidden_size, hidden_size, dtype=dtype) cell_bw = LSTMCell(2 * hidden_size, hidden_size, dtype=dtype) self.append(BiRNN(cell_fw, cell_bw, time_major)) else: raise ValueError( "direction should be forward, backward or bidirectional, " "received direction = {}".format(direction)) self.input_size = input_size self.hidden_size = hidden_size self.dropout = dropout self.num_directions = 2 if direction == "bidirectional" else 1 self.time_major = time_major self.num_layers = num_layers self.state_components = 2 class GRU(RNNMixin): def __init__(self, input_size, hidden_size, num_layers=1, direction="forward", dropout=0., time_major=False, dtype="float64"): super(GRU, self).__init__() if direction in ["forward", "backward"]: is_reverse = direction == "backward" cell = GRUCell(input_size, hidden_size, dtype=dtype) self.append(RNN(cell, is_reverse, time_major)) for i in range(1, num_layers): cell = GRUCell(hidden_size, hidden_size, dtype=dtype) self.append(RNN(cell, is_reverse, time_major)) elif direction == "bidirectional": cell_fw = GRUCell(input_size, hidden_size, dtype=dtype) cell_bw = GRUCell(input_size, hidden_size, dtype=dtype) self.append(BiRNN(cell_fw, cell_bw, time_major)) for i in range(1, num_layers): cell_fw = GRUCell(2 * hidden_size, hidden_size, dtype=dtype) cell_bw = GRUCell(2 * hidden_size, hidden_size, dtype=dtype) self.append(BiRNN(cell_fw, cell_bw, time_major)) else: raise ValueError( "direction should be forward, backward or bidirectional, " "received direction = {}".format(direction)) self.input_size = input_size self.hidden_size = hidden_size self.dropout = dropout self.num_directions = 2 if direction == "bidirectional" else 1 self.time_major = time_major self.num_layers = num_layers self.state_components = 1