lookup_table_op.cu 8.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15 16 17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/lookup_table_op.h"
#include "paddle/fluid/platform/assert.h"
D
dzhwinter 已提交
19
#include "paddle/fluid/platform/cuda_primitives.h"
20
#include "paddle/fluid/platform/float16.h"
21 22 23 24

namespace paddle {
namespace operators {

25 26
template <typename T, int BlockDimX, int BlockDimY, int GridDimX,
          bool PaddingFlag>
27
__global__ void LookupTable(T *output, const T *table, const int64_t *ids,
28 29
                            const int64_t N, const int64_t K, const int64_t D,
                            const int64_t padding_idx) {
30
  int idx = threadIdx.x;
31
  int idy = blockIdx.x + threadIdx.y * GridDimX;
32 33

  while (idy < K) {
34
    int64_t id = ids[idy];
35 36 37 38 39 40 41 42 43 44
    PADDLE_ASSERT_MSG(
        id >= 0,
        "Variable value (input) of OP(fluid.layers.embedding) "
        "expected >= 0 and < %ld, but got %ld. Please check input value.",
        N, id);
    PADDLE_ASSERT_MSG(
        id < N,
        "Variable value (input) of OP(fluid.layers.embedding) "
        "expected >= 0 and < %ld, but got %ld. Please check input value.",
        N, id);
45 46
    T *out = output + idy * D;
    const T *tab = table + id * D;
47
    for (int i = idx; i < D; i += BlockDimX) {
48
      if (PaddingFlag) {
49
        if (id == padding_idx)
50 51 52 53 54 55
          out[i] = static_cast<T>(0);
        else
          out[i] = tab[i];
      } else {
        out[i] = tab[i];
      }
56
    }
57
    idy += BlockDimY * GridDimX;
58 59 60
  }
}

61
template <typename T, int BlockDimX, int BlockDimY, int GridDimX>
62
__global__ void LookupTableGrad(T *table, const T *output, const int64_t *ids,
63 64
                                const int64_t N, const int64_t K,
                                const int64_t D) {
65
  int idx = threadIdx.x;
66
  int idy = blockIdx.x + threadIdx.y * GridDimX;
67 68

  while (idy < K) {
69
    int64_t id = ids[idy];
70 71 72 73 74 75 76 77 78 79
    PADDLE_ASSERT_MSG(
        id >= 0,
        "Variable value (input) of OP(fluid.layers.embedding) "
        "expected >= 0 and < %ld, but got %ld. Please check input value.",
        N, id);
    PADDLE_ASSERT_MSG(
        id < N,
        "Variable value (input) of OP(fluid.layers.embedding) "
        "expected >= 0 and < %ld, but got %ld. Please check input value.",
        N, id);
80 81
    const T *out = output + idy * D;
    T *tab = table + id * D;
82
    for (int i = idx; i < D; i += BlockDimX) {
D
dangqingqing 已提交
83
      paddle::platform::CudaAtomicAdd(&tab[i], out[i]);
84
    }
85
    idy += BlockDimY * GridDimX;
86 87 88 89
  }
}

template <typename T>
Y
Yu Yang 已提交
90
class LookupTableCUDAKernel : public framework::OpKernel<T> {
91
 public:
92 93 94 95
  void Compute(const framework::ExecutionContext &context) const override {
    auto *table_t = context.Input<LoDTensor>("W");
    auto *ids_t = context.Input<LoDTensor>("Ids");
    auto *output_t = context.Output<LoDTensor>("Out");
96
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
97

98 99 100 101 102
    auto id_name = context.Inputs("Ids").front();
    auto out_name = context.Outputs("Out").front();

    // for remote prefetch
    auto epmap = context.Attr<std::vector<std::string>>("epmap");
103 104
    auto height_sections =
        context.Attr<std::vector<int64_t>>("height_sections");
105 106 107 108 109 110 111 112
    auto table_names = context.Attr<std::vector<std::string>>("table_names");

    if (!epmap.empty()) {
// if epmap is not empty, then the parameter will be fetched from remote
// parameter
// server
#ifdef PADDLE_WITH_DISTRIBUTE
      operators::distributed::prefetch(id_name, out_name, table_names, epmap,
113 114
                                       height_sections, context,
                                       context.scope());
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
#else
      PADDLE_THROW(
          "paddle is not compiled with distribute support, can not do "
          "parameter prefetch!");
#endif
    } else {
      size_t N = table_t->dims()[0];
      size_t D = table_t->dims()[1];
      size_t K = ids_t->numel();

      auto *ids = ids_t->data<int64_t>();
      auto *table = table_t->data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());

      dim3 threads(128, 8);
      dim3 grids(8, 1);

      if (padding_idx == -1)
        LookupTable<T, 128, 8, 8, false><<<
            grids, threads, 0, context.cuda_device_context().stream()>>>(
            output, table, ids, N, K, D, padding_idx);
      else
        LookupTable<T, 128, 8, 8, true><<<
            grids, threads, 0, context.cuda_device_context().stream()>>>(
            output, table, ids, N, K, D, padding_idx);
    }
141 142 143 144
  }
};

template <typename T>
Y
Yu Yang 已提交
145
class LookupTableGradCUDAKernel : public framework::OpKernel<T> {
146
 public:
147 148
  void Compute(const framework::ExecutionContext &context) const override {
    auto &dev_ctx =
Q
QI JUN 已提交
149
        context.template device_context<platform::CUDADeviceContext>();
150
    bool is_sparse = context.Attr<bool>("is_sparse");
151

152 153
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
154
    if (is_sparse) {
155 156 157 158
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *table = context.Input<LoDTensor>("W");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
159

160
      auto *ids_data = ids->data<int64_t>();
161
      int64_t ids_num = ids->numel();
162

Q
QI JUN 已提交
163
      auto stream = dev_ctx.stream();
164 165
      // copy GPU memory to CPU pinned memory
      framework::Vector<int64_t> new_rows;
166
      new_rows.resize(ids_num);
D
dzhwinter 已提交
167
      auto gpu_place = boost::get<platform::CUDAPlace>(context.GetPlace());
168

Y
Yu Yang 已提交
169
      // TODO(yuyang18): Strange code here.
Y
Yu Yang 已提交
170 171
      memory::Copy(gpu_place, new_rows.CUDAMutableData(context.GetPlace()),
                   gpu_place, ids_data, ids_num * sizeof(int64_t), stream);
172 173
      d_table->set_rows(new_rows);

174
      auto *d_table_value = d_table->mutable_value();
175
      d_table_value->Resize({ids_num, table->dims()[1]});
176 177
      d_table_value->mutable_data<T>(context.GetPlace());

178 179
      auto *d_table_data = d_table_value->data<T>();
      auto *d_output_data = d_output->data<T>();
F
fengjiayi 已提交
180 181 182 183
      auto d_output_dims = d_output->dims();
      PADDLE_ENFORCE_EQ(
          d_table_value->dims(),
          framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1));
184
      memory::Copy(gpu_place, d_table_data, gpu_place, d_output_data,
185
                   d_output->numel() * sizeof(T), stream);
186 187

    } else {
F
fengjiayi 已提交
188 189 190
      auto ids_t = context.Input<LoDTensor>("Ids");
      auto d_output_t = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto d_table_t = context.Output<LoDTensor>(framework::GradVarName("W"));
191 192 193 194

      int N = d_table_t->dims()[0];
      int D = d_table_t->dims()[1];
      int K = ids_t->numel();
195 196 197
      const int64_t *ids = ids_t->data<int64_t>();
      const T *d_output = d_output_t->data<T>();
      T *d_table = d_table_t->mutable_data<T>(context.GetPlace());
198 199

      auto t = framework::EigenVector<T>::Flatten(*d_table_t);
Q
QI JUN 已提交
200
      t.device(*dev_ctx.eigen_device()) = t.constant(static_cast<T>(0));
201 202 203

      dim3 threads(128, 8);
      dim3 grids(8, 1);
Q
QI JUN 已提交
204
      LookupTableGrad<T, 128, 8, 8><<<grids, threads, 0, dev_ctx.stream()>>>(
T
typhoonzero 已提交
205
          d_table, d_output, ids, N, K, D);
206
    }
207 208 209 210 211 212 213
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
214
namespace plat = paddle::platform;
Q
QI JUN 已提交
215
REGISTER_OP_CUDA_KERNEL(lookup_table, ops::LookupTableCUDAKernel<float>,
216 217
                        ops::LookupTableCUDAKernel<double>,
                        ops::LookupTableCUDAKernel<plat::float16>);
Q
QI JUN 已提交
218 219
REGISTER_OP_CUDA_KERNEL(lookup_table_grad,
                        ops::LookupTableGradCUDAKernel<float>,
220 221
                        ops::LookupTableGradCUDAKernel<double>,
                        ops::LookupTableGradCUDAKernel<plat::float16>);