lookup_table_op.cu 7.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15 16 17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/lookup_table_op.h"
#include "paddle/fluid/platform/assert.h"
D
dzhwinter 已提交
19
#include "paddle/fluid/platform/cuda_primitives.h"
20
#include "paddle/fluid/platform/float16.h"
21 22 23 24

namespace paddle {
namespace operators {

25 26
template <typename T, int BlockDimX, int BlockDimY, int GridDimX,
          bool PaddingFlag>
27
__global__ void LookupTable(T *output, const T *table, const int64_t *ids,
28 29
                            const int64_t N, const int64_t K, const int64_t D,
                            const int64_t padding_idx) {
30
  int idx = threadIdx.x;
31
  int idy = blockIdx.x + threadIdx.y * GridDimX;
32 33

  while (idy < K) {
34
    int64_t id = ids[idy];
C
chengduo 已提交
35 36
    PADDLE_ASSERT_MSG(id >= 0, "received id:", id);
    PADDLE_ASSERT_MSG(id < N, "received id:", id);
37 38
    T *out = output + idy * D;
    const T *tab = table + id * D;
39
    for (int i = idx; i < D; i += BlockDimX) {
40
      if (PaddingFlag) {
41
        if (id == padding_idx)
42 43 44 45 46 47
          out[i] = static_cast<T>(0);
        else
          out[i] = tab[i];
      } else {
        out[i] = tab[i];
      }
48
    }
49
    idy += BlockDimY * GridDimX;
50 51 52
  }
}

53
template <typename T, int BlockDimX, int BlockDimY, int GridDimX>
54
__global__ void LookupTableGrad(T *table, const T *output, const int64_t *ids,
55 56
                                const int64_t N, const int64_t K,
                                const int64_t D) {
57
  int idx = threadIdx.x;
58
  int idy = blockIdx.x + threadIdx.y * GridDimX;
59 60

  while (idy < K) {
61
    int64_t id = ids[idy];
C
chengduo 已提交
62 63
    PADDLE_ASSERT_MSG(id >= 0, "received id:", id);
    PADDLE_ASSERT_MSG(id < N, "received id:", id);
64 65
    const T *out = output + idy * D;
    T *tab = table + id * D;
66
    for (int i = idx; i < D; i += BlockDimX) {
D
dangqingqing 已提交
67
      paddle::platform::CudaAtomicAdd(&tab[i], out[i]);
68
    }
69
    idy += BlockDimY * GridDimX;
70 71 72 73
  }
}

template <typename T>
Y
Yu Yang 已提交
74
class LookupTableCUDAKernel : public framework::OpKernel<T> {
75
 public:
76 77 78 79
  void Compute(const framework::ExecutionContext &context) const override {
    auto *table_t = context.Input<LoDTensor>("W");
    auto *ids_t = context.Input<LoDTensor>("Ids");
    auto *output_t = context.Output<LoDTensor>("Out");
80
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
81

82 83 84 85 86
    auto id_name = context.Inputs("Ids").front();
    auto out_name = context.Outputs("Out").front();

    // for remote prefetch
    auto epmap = context.Attr<std::vector<std::string>>("epmap");
87 88
    auto height_sections =
        context.Attr<std::vector<int64_t>>("height_sections");
89 90 91 92 93 94 95 96
    auto table_names = context.Attr<std::vector<std::string>>("table_names");

    if (!epmap.empty()) {
// if epmap is not empty, then the parameter will be fetched from remote
// parameter
// server
#ifdef PADDLE_WITH_DISTRIBUTE
      operators::distributed::prefetch(id_name, out_name, table_names, epmap,
97 98
                                       height_sections, context,
                                       context.scope());
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
#else
      PADDLE_THROW(
          "paddle is not compiled with distribute support, can not do "
          "parameter prefetch!");
#endif
    } else {
      size_t N = table_t->dims()[0];
      size_t D = table_t->dims()[1];
      size_t K = ids_t->numel();

      auto *ids = ids_t->data<int64_t>();
      auto *table = table_t->data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());

      dim3 threads(128, 8);
      dim3 grids(8, 1);

      if (padding_idx == -1)
        LookupTable<T, 128, 8, 8, false><<<
            grids, threads, 0, context.cuda_device_context().stream()>>>(
            output, table, ids, N, K, D, padding_idx);
      else
        LookupTable<T, 128, 8, 8, true><<<
            grids, threads, 0, context.cuda_device_context().stream()>>>(
            output, table, ids, N, K, D, padding_idx);
    }
125 126 127 128
  }
};

template <typename T>
Y
Yu Yang 已提交
129
class LookupTableGradCUDAKernel : public framework::OpKernel<T> {
130
 public:
131 132
  void Compute(const framework::ExecutionContext &context) const override {
    auto &dev_ctx =
Q
QI JUN 已提交
133
        context.template device_context<platform::CUDADeviceContext>();
134
    bool is_sparse = context.Attr<bool>("is_sparse");
135

136 137
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
138
    if (is_sparse) {
139 140 141 142
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *table = context.Input<LoDTensor>("W");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
143

144
      auto *ids_data = ids->data<int64_t>();
145
      int64_t ids_num = ids->numel();
146

Q
QI JUN 已提交
147
      auto stream = dev_ctx.stream();
148 149
      // copy GPU memory to CPU pinned memory
      framework::Vector<int64_t> new_rows;
150
      new_rows.resize(ids_num);
D
dzhwinter 已提交
151
      auto gpu_place = boost::get<platform::CUDAPlace>(context.GetPlace());
152

Y
Yu Yang 已提交
153
      // TODO(yuyang18): Strange code here.
Y
Yu Yang 已提交
154 155
      memory::Copy(gpu_place, new_rows.CUDAMutableData(context.GetPlace()),
                   gpu_place, ids_data, ids_num * sizeof(int64_t), stream);
156 157
      d_table->set_rows(new_rows);

158
      auto *d_table_value = d_table->mutable_value();
159
      d_table_value->Resize({ids_num, table->dims()[1]});
160 161
      d_table_value->mutable_data<T>(context.GetPlace());

162 163
      auto *d_table_data = d_table_value->data<T>();
      auto *d_output_data = d_output->data<T>();
F
fengjiayi 已提交
164 165 166 167
      auto d_output_dims = d_output->dims();
      PADDLE_ENFORCE_EQ(
          d_table_value->dims(),
          framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1));
168
      memory::Copy(gpu_place, d_table_data, gpu_place, d_output_data,
169
                   d_output->numel() * sizeof(T), stream);
170 171

    } else {
F
fengjiayi 已提交
172 173 174
      auto ids_t = context.Input<LoDTensor>("Ids");
      auto d_output_t = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto d_table_t = context.Output<LoDTensor>(framework::GradVarName("W"));
175 176 177 178

      int N = d_table_t->dims()[0];
      int D = d_table_t->dims()[1];
      int K = ids_t->numel();
179 180 181
      const int64_t *ids = ids_t->data<int64_t>();
      const T *d_output = d_output_t->data<T>();
      T *d_table = d_table_t->mutable_data<T>(context.GetPlace());
182 183

      auto t = framework::EigenVector<T>::Flatten(*d_table_t);
Q
QI JUN 已提交
184
      t.device(*dev_ctx.eigen_device()) = t.constant(static_cast<T>(0));
185 186 187

      dim3 threads(128, 8);
      dim3 grids(8, 1);
Q
QI JUN 已提交
188
      LookupTableGrad<T, 128, 8, 8><<<grids, threads, 0, dev_ctx.stream()>>>(
T
typhoonzero 已提交
189
          d_table, d_output, ids, N, K, D);
190
    }
191 192 193 194 195 196 197
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
198
namespace plat = paddle::platform;
Q
QI JUN 已提交
199
REGISTER_OP_CUDA_KERNEL(lookup_table, ops::LookupTableCUDAKernel<float>,
200 201
                        ops::LookupTableCUDAKernel<double>,
                        ops::LookupTableCUDAKernel<plat::float16>);
Q
QI JUN 已提交
202 203
REGISTER_OP_CUDA_KERNEL(lookup_table_grad,
                        ops::LookupTableGradCUDAKernel<float>,
204 205
                        ops::LookupTableGradCUDAKernel<double>,
                        ops::LookupTableGradCUDAKernel<plat::float16>);