ut_helper.h 8.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/*
 * This file implements a UT framework to make the validation of transforming
 * Fluid Op to TRT Layer.
 */

#pragma once

N
nhzlx 已提交
22
#include <memory>
23
#include <string>
N
nhzlx 已提交
24
#include <unordered_set>
25 26
#include <vector>

Y
Yan Chunwei 已提交
27 28
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
N
nhzlx 已提交
29
#include "paddle/fluid/framework/tensor_util.h"
Y
Yan Chunwei 已提交
30 31 32
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
33
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yan Chunwei 已提交
34 35 36 37 38 39 40 41 42

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Get a random float value between [low, high]
 */
float random(float low, float high) {
43
  static std::mt19937 mt(100);
44
  std::uniform_real_distribution<double> dist(low, high);
Y
Yan Chunwei 已提交
45 46 47 48 49 50 51 52
  return dist(mt);
}

void RandomizeTensor(framework::LoDTensor* tensor, const platform::Place& place,
                     const platform::DeviceContext& ctx) {
  auto dims = tensor->dims();
  size_t num_elements = analysis::AccuDims(dims, dims.size());
  PADDLE_ENFORCE_GT(num_elements, 0);
N
nhzlx 已提交
53 54 55 56 57

  platform::CPUPlace cpu_place;
  framework::LoDTensor temp_tensor;
  temp_tensor.Resize(dims);
  auto* temp_data = temp_tensor.mutable_data<float>(cpu_place);
58

Y
Yan Chunwei 已提交
59
  for (size_t i = 0; i < num_elements; i++) {
N
nhzlx 已提交
60
    *(temp_data + i) = random(0., 1.);
Y
Yan Chunwei 已提交
61
  }
N
nhzlx 已提交
62 63

  TensorCopySync(temp_tensor, place, tensor);
Y
Yan Chunwei 已提交
64 65 66 67 68 69 70 71 72 73
}

/*
 * Help to validate the correctness between Fluid Op and the corresponding TRT
 * layer.
 */
class TRTConvertValidation {
 public:
  TRTConvertValidation() = delete;

74
  TRTConvertValidation(int max_batch_size,
75
                       const std::unordered_set<std::string>& parameters,
G
gongweibao 已提交
76
                       framework::Scope& scope,  // NOLINT
N
nhzlx 已提交
77
                       int workspace_size = 1 << 10, bool if_add_batch = true)
78 79
      : parameters_(parameters),
        scope_(scope),
N
nhzlx 已提交
80 81
        if_add_batch_(if_add_batch),
        max_batch_size_(max_batch_size) {
Y
Yan Chunwei 已提交
82
    PADDLE_ENFORCE_EQ(cudaStreamCreate(&stream_), 0);
N
nhzlx 已提交
83 84
    engine_.reset(
        new TensorRTEngine(max_batch_size, workspace_size, false, nullptr, 0));
N
nhzlx 已提交
85
    engine_->InitNetwork();
Y
Yan Chunwei 已提交
86 87 88
  }

  // Declare a Variable as input with random initialization.
N
nhzlx 已提交
89 90 91 92 93 94
  void DeclInputVar(const std::string& name, const std::vector<int> tensor_dims,
                    const nvinfer1::Dims& trt_dims) {
    DeclVar(name, tensor_dims);
    engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, trt_dims);
  }

Y
Yan Chunwei 已提交
95 96 97 98 99 100
  void DeclInputVar(const std::string& name, const nvinfer1::Dims& dims) {
    DeclVar(name, dims);
    // Declare TRT inputs.
    engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, dims);
  }

N
nhzlx 已提交
101 102 103 104
  void DeclParamVar(const std::string& name, const std::vector<int> dim_vec) {
    DeclVar(name, dim_vec);
  }

105 106
  // Declare a parameter varaible in the scope.
  void DeclParamVar(const std::string& name, const nvinfer1::Dims& dims) {
107
    DeclVar(name, dims, true);
108 109
  }

N
nhzlx 已提交
110 111 112 113
  void DeclOutputVar(const std::string& name, const std::vector<int> dim_vec) {
    DeclVar(name, dim_vec);
  }

Y
Yan Chunwei 已提交
114 115 116 117
  void DeclOutputVar(const std::string& name, const nvinfer1::Dims& dims) {
    DeclVar(name, dims);
  }

N
nhzlx 已提交
118
  void DeclVar(const std::string& name, const std::vector<int> dim_vec) {
N
nhzlx 已提交
119
    platform::CUDADeviceContext ctx(place_);
Y
Yan Chunwei 已提交
120

N
nhzlx 已提交
121 122 123
    auto* x = scope_.Var(name);
    auto* x_tensor = x->GetMutable<framework::LoDTensor>();
    x_tensor->Resize(framework::make_ddim(dim_vec));
N
nhzlx 已提交
124
    RandomizeTensor(x_tensor, place_, ctx);
N
nhzlx 已提交
125 126 127 128
  }
  // Declare a variable in a fluid Scope.
  void DeclVar(const std::string& name, const nvinfer1::Dims& dims,
               bool is_param = false) {
Y
Yan Chunwei 已提交
129
    // Init Fluid tensor.
130
    std::vector<int> dim_vec(dims.d, dims.d + dims.nbDims);
131
    // There is no batchsize in ITensor's shape, but We should add it to
N
nhzlx 已提交
132 133 134 135
    // tensor's shape of fluid. If the variable is not parameter and the
    // if_add_batch_ flag is true, add the max batchsize to dim_vec.
    if (is_param != true && if_add_batch_ == true)
      dim_vec.insert(dim_vec.begin(), max_batch_size_);
N
nhzlx 已提交
136 137

    DeclVar(name, dim_vec);
Y
Yan Chunwei 已提交
138 139 140 141 142
  }

  void SetOp(const framework::proto::OpDesc& desc) {
    op_ = framework::OpRegistry::CreateOp(desc);

143 144
    Singleton<OpConverter>::Global().ConvertOp(
        desc, parameters_, scope_, engine_.get(), true /*test_mode*/);
Y
Yan Chunwei 已提交
145 146 147 148

    engine_->FreezeNetwork();

    // Declare outputs.
F
fengjiayi 已提交
149
    op_desc_.reset(new framework::OpDesc(desc, nullptr));
Y
Yan Chunwei 已提交
150 151
  }

N
nhzlx 已提交
152 153 154
  // We use the set 'neglected_output' here, because some Ops like batch norm,
  // the outputs specified in the op des are only used during training,
  // so we should neglect those output during inference.
N
nhzlx 已提交
155 156
  void Execute(int batch_size,
               std::unordered_set<std::string> neglected_output = {}) {
Y
Yan Chunwei 已提交
157
    // Execute Fluid Op
N
nhzlx 已提交
158
    PADDLE_ENFORCE_LE(batch_size, max_batch_size_);
N
nhzlx 已提交
159 160
    platform::CUDADeviceContext ctx(place_);
    op_->Run(scope_, place_);
161
    cudaStreamSynchronize(stream_);
N
nhzlx 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    std::vector<std::string> input_output_names;

    // Note: we need filter the parameter
    for (const auto& input : op_desc_->InputArgumentNames()) {
      if (parameters_.count(input)) continue;
      input_output_names.push_back(input);
    }

    // Collect the fluid outputs.
    std::vector<std::vector<float>> fluid_outs;
    for (const auto& output : op_desc_->OutputArgumentNames()) {
      if (neglected_output.count(output)) continue;
      input_output_names.push_back(output);
      std::vector<float> fluid_out;
      auto* var = scope_.FindVar(output);
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      framework::TensorToVector(*tensor, ctx, &fluid_out);
      fluid_outs.push_back(fluid_out);
    }

    // Bind input and output for TRT.
    const int num_bindings = input_output_names.size();
    std::vector<void*> buffers(num_bindings);

    for (const std::string& name : input_output_names) {
      auto* var = scope_.FindVar(name);
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      const int bind_index = engine_->engine()->getBindingIndex(name.c_str());
      buffers[bind_index] =
N
nhzlx 已提交
191
          static_cast<void*>(tensor->mutable_data<float>(place_));
N
nhzlx 已提交
192 193
    }

194
    // Execute TRT.
195
    engine_->Execute(batch_size, &buffers, stream_);
196
    cudaStreamSynchronize(stream_);
Y
Yan Chunwei 已提交
197 198

    ASSERT_FALSE(op_desc_->OutputArgumentNames().empty());
N
nhzlx 已提交
199
    int index = 0;
Y
Yan Chunwei 已提交
200
    for (const auto& output : op_desc_->OutputArgumentNames()) {
N
nhzlx 已提交
201
      if (neglected_output.count(output)) continue;
N
nhzlx 已提交
202
      std::vector<float> trt_out;
Y
Yan Chunwei 已提交
203
      auto* var = scope_.FindVar(output);
N
nhzlx 已提交
204 205
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      framework::TensorToVector(*tensor, ctx, &trt_out);
N
nhzlx 已提交
206

N
nhzlx 已提交
207
      size_t fluid_out_size = fluid_outs[index].size();
N
nhzlx 已提交
208
      if (if_add_batch_ == true) {
N
nhzlx 已提交
209 210
        fluid_out_size =
            batch_size * (framework::product(tensor->dims()) / max_batch_size_);
N
nhzlx 已提交
211
      }
N
nhzlx 已提交
212

N
nhzlx 已提交
213
      for (size_t i = 0; i < fluid_out_size; i++) {
214
        // Loose the threshold for CI in different machine model.
N
nhzlx 已提交
215
        EXPECT_LT(std::abs(fluid_outs[index][i] - trt_out[i]), 2e-5);
Y
Yan Chunwei 已提交
216
      }
N
nhzlx 已提交
217
      index += 1;
Y
Yan Chunwei 已提交
218 219 220 221 222 223
    }
  }

  framework::Scope& scope() { return scope_; }

 private:
N
nhzlx 已提交
224
  platform::CUDAPlace place_;
Y
Yan Chunwei 已提交
225 226 227 228
  std::unique_ptr<TensorRTEngine> engine_;
  cudaStream_t stream_;
  std::unique_ptr<framework::OperatorBase> op_;
  std::unique_ptr<framework::OpDesc> op_desc_;
229 230
  const std::unordered_set<std::string>& parameters_;
  framework::Scope& scope_;
N
nhzlx 已提交
231 232 233 234 235 236
  // The ITensor of trt does not cotain the batch size,
  // bug, in most cases, we need to set batch size for
  // fluid's tensor shape. This variable indicates
  // whether to add batch size to tensor shape of fluid.
  bool if_add_batch_;
  int max_batch_size_;
Y
Yan Chunwei 已提交
237 238 239 240 241
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle