detection_output_op.h 7.8 KB
Newer Older
S
sweetsky0901 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/framework/tensor.h"
#include "paddle/operators/math/detection_util.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/softmax.h"
S
sweetsky0901 已提交
21
#include "paddle/operators/strided_memcpy.h"
S
sweetsky0901 已提交
22 23 24
namespace paddle {
namespace operators {
template <typename Place, typename T>
S
sweetsky0901 已提交
25 26 27
inline void transpose_fun(const platform::DeviceContext& context,
                          const framework::Tensor& src,
                          framework::Tensor* dst) {
S
sweetsky0901 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
  int input_nums = src.dims()[0];
  int offset = 0;
  for (int j = 0; j < input_nums; ++j) {
    framework::Tensor in_p_tensor = src.Slice(j, j + 1);
    std::vector<int64_t> shape_vec(
        {in_p_tensor.dims()[0], in_p_tensor.dims()[1], in_p_tensor.dims()[3],
         in_p_tensor.dims()[4], in_p_tensor.dims()[2]});
    framework::DDim shape(framework::make_ddim(shape_vec));
    framework::Tensor in_p_tensor_transpose;
    in_p_tensor_transpose.mutable_data<T>(shape, context.GetPlace());
    std::vector<int> shape_axis({0, 1, 3, 4, 2});
    math::Transpose<Place, T, 5> trans5;
    trans5(context, in_p_tensor, &in_p_tensor_transpose, shape_axis);
    auto dst_stride = framework::stride(dst->dims());
    auto src_stride = framework::stride(in_p_tensor_transpose.dims());
    StridedMemcpy<T>(context, in_p_tensor_transpose.data<T>(), src_stride,
                     in_p_tensor_transpose.dims(), dst_stride,
                     dst->data<T>() + offset);
    offset += in_p_tensor_transpose.dims()[4] * src_stride[4];
  }
}
template <typename Place, typename T>
S
sweetsky0901 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
class Detection_output_Kernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor* in_loc = context.Input<framework::Tensor>("Loc");
    const framework::Tensor* in_conf = context.Input<framework::Tensor>("Conf");
    const framework::Tensor* in_priorbox =
        context.Input<framework::Tensor>("PriorBox");
    auto* out = context.Output<framework::Tensor>("Out");
    int num_classes = context.template Attr<int>("num_classes");
    int top_k = context.template Attr<int>("top_k");
    int nms_top_k = context.template Attr<int>("nms_top_k");
    int background_label_id = context.template Attr<int>("background_label_id");
    float nms_threshold = context.template Attr<float>("nms_threshold");
    float confidence_threshold =
        context.template Attr<float>("confidence_threshold");
S
sweetsky0901 已提交
65
    int batch_size = in_conf->dims()[1];
S
sweetsky0901 已提交
66
    int conf_sum_size = in_conf->numel();
S
sweetsky0901 已提交
67 68
    // for softmax
    std::vector<int64_t> conf_shape_softmax_vec(
S
sweetsky0901 已提交
69
        {conf_sum_size / num_classes, num_classes});
S
sweetsky0901 已提交
70 71 72 73
    framework::DDim conf_shape_softmax(
        framework::make_ddim(conf_shape_softmax_vec));
    // for knchw => nhwc
    std::vector<int64_t> loc_shape_vec({1, in_loc->dims()[1], in_loc->dims()[3],
S
sweetsky0901 已提交
74 75 76 77 78
                                        in_loc->dims()[4],
                                        in_loc->dims()[2] * in_loc->dims()[0]});
    std::vector<int64_t> conf_shape_vec(
        {1, in_conf->dims()[1], in_conf->dims()[3], in_conf->dims()[4],
         in_conf->dims()[2] * in_conf->dims()[0]});
S
sweetsky0901 已提交
79 80 81 82 83 84
    framework::DDim loc_shape(framework::make_ddim(loc_shape_vec));
    framework::DDim conf_shape(framework::make_ddim(conf_shape_vec));
    framework::Tensor loc_tensor;
    framework::Tensor conf_tensor;
    loc_tensor.mutable_data<T>(loc_shape, context.GetPlace());
    conf_tensor.mutable_data<T>(conf_shape, context.GetPlace());
S
sweetsky0901 已提交
85
    // for cpu
86 87 88 89
    framework::Tensor loc_cpu;
    framework::Tensor conf_cpu;
    framework::Tensor priorbox_cpu;
    const T* priorbox_data = in_priorbox->data<T>();
S
sweetsky0901 已提交
90 91 92 93 94 95 96
    transpose_fun<Place, T>(context.device_context(), *in_loc, &loc_tensor);
    transpose_fun<Place, T>(context.device_context(), *in_conf, &conf_tensor);
    conf_tensor.Resize(conf_shape_softmax);
    math::SoftmaxFunctor<Place, T>()(context.device_context(), &conf_tensor,
                                     &conf_tensor);
    T* loc_data = loc_tensor.data<T>();
    T* conf_data = conf_tensor.data<T>();
97
    if (platform::is_gpu_place(context.GetPlace())) {
S
sweetsky0901 已提交
98 99
      loc_cpu.mutable_data<T>(loc_tensor.dims(), platform::CPUPlace());
      framework::CopyFrom(loc_tensor, platform::CPUPlace(),
100
                          context.device_context(), &loc_cpu);
S
sweetsky0901 已提交
101 102 103
      loc_data = loc_cpu.data<T>();
      conf_cpu.mutable_data<T>(conf_tensor.dims(), platform::CPUPlace());
      framework::CopyFrom(conf_tensor, platform::CPUPlace(),
104
                          context.device_context(), &conf_cpu);
S
sweetsky0901 已提交
105
      conf_data = conf_cpu.data<T>();
106 107 108 109
      priorbox_cpu.mutable_data<T>(in_priorbox->dims(), platform::CPUPlace());
      framework::CopyFrom(*in_priorbox, platform::CPUPlace(),
                          context.device_context(), &priorbox_cpu);
      priorbox_data = priorbox_cpu.data<T>();
S
sweetsky0901 已提交
110 111 112 113 114 115 116 117 118 119
    }
    // get decode bboxes
    size_t num_priors = in_priorbox->numel() / 8;
    std::vector<std::vector<operators::math::BBox<T>>> all_decoded_bboxes;
    for (size_t n = 0; n < batch_size; ++n) {
      std::vector<operators::math::BBox<T>> decoded_bboxes;
      for (size_t i = 0; i < num_priors; ++i) {
        size_t prior_offset = i * 8;
        size_t loc_pred_offset = n * num_priors * 4 + i * 4;
        std::vector<math::BBox<T>> prior_bbox_vec;
120
        math::getBBoxFromPriorData<T>(priorbox_data + prior_offset, 1,
S
sweetsky0901 已提交
121 122
                                      prior_bbox_vec);
        std::vector<std::vector<T>> prior_bbox_var;
123 124
        math::getBBoxVarFromPriorData<T>(priorbox_data + prior_offset, 1,
                                         prior_bbox_var);
S
sweetsky0901 已提交
125 126
        std::vector<T> loc_pred_data;
        for (size_t j = 0; j < 4; ++j)
127
          loc_pred_data.push_back(*(loc_data + loc_pred_offset + j));
S
sweetsky0901 已提交
128 129 130 131 132 133 134 135
        math::BBox<T> bbox = math::decodeBBoxWithVar<T>(
            prior_bbox_vec[0], prior_bbox_var[0], loc_pred_data);
        decoded_bboxes.push_back(bbox);
      }
      all_decoded_bboxes.push_back(decoded_bboxes);
    }
    std::vector<std::map<size_t, std::vector<size_t>>> all_indices;
    int num_kept = math::getDetectionIndices<T>(
136 137
        conf_data, num_priors, num_classes, background_label_id, batch_size,
        confidence_threshold, nms_top_k, nms_threshold, top_k,
S
sweetsky0901 已提交
138 139 140 141 142 143 144 145 146 147 148
        all_decoded_bboxes, &all_indices);

    if (num_kept <= 0) {
      std::vector<int64_t> out_shape_vec({0, 0});
      framework::DDim out_shape(framework::make_ddim(out_shape_vec));
      out->Resize(out_shape);
      return;
    }
    std::vector<int64_t> out_shape_vec({num_kept, 7});
    framework::DDim out_shape(framework::make_ddim(out_shape_vec));
    out->mutable_data<T>(out_shape, context.GetPlace());
149 150 151 152 153 154 155 156 157 158 159 160 161
    framework::Tensor out_cpu;
    T* out_data = out->data<T>();
    if (platform::is_gpu_place(context.GetPlace())) {
      out_cpu.mutable_data<T>(out->dims(), platform::CPUPlace());
      out_data = out_cpu.data<T>();
    }
    math::getDetectionOutput<T>(conf_data, num_kept, num_priors, num_classes,
                                batch_size, all_indices, all_decoded_bboxes,
                                out_data);
    if (platform::is_gpu_place(context.GetPlace())) {
      framework::CopyFrom(out_cpu, platform::GPUPlace(),
                          context.device_context(), out);
    }
S
sweetsky0901 已提交
162 163 164 165
  }
};
}  // namespace operators
}  // namespace paddle