Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
fe177b62
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fe177b62
编写于
12月 09, 2017
作者:
S
sweetsky0901
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test detection_output cpu and gpu ok, but doc will be modify
上级
9e72cc5c
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
145 addition
and
42 deletion
+145
-42
paddle/operators/detection_output_op.cc
paddle/operators/detection_output_op.cc
+8
-7
paddle/operators/detection_output_op.h
paddle/operators/detection_output_op.h
+73
-22
paddle/operators/math/detection_util.h
paddle/operators/math/detection_util.h
+9
-13
python/paddle/v2/fluid/tests/test_detection_output_op.py
python/paddle/v2/fluid/tests/test_detection_output_op.py
+55
-0
未找到文件。
paddle/operators/detection_output_op.cc
浏览文件 @
fe177b62
...
...
@@ -65,17 +65,18 @@ class Detection_output_Op : public framework::OperatorWithKernel {
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Loc"
),
"Input(X) of Detection_output_Op"
"should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Conf"
),
"Input(X) of Detection_output_Op"
"should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"PriorBox"
),
"Input(X) of Detection_output_Op"
"should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of Detection_output_Op should not be null."
);
auto
in_x_dims
=
ctx
->
GetInputDim
(
"X"
);
int
pyramid_height
=
ctx
->
Attrs
().
Get
<
int
>
(
"pyramid_height"
);
PADDLE_ENFORCE
(
in_x_dims
.
size
()
==
4
,
"Detection_output_ing intput must be of 4-dimensional."
);
int
outlen
=
((
std
::
pow
(
4
,
pyramid_height
)
-
1
)
/
(
4
-
1
))
*
in_x_dims
[
1
];
std
::
vector
<
int64_t
>
output_shape
({
in_x_dims
[
0
],
outlen
});
std
::
vector
<
int64_t
>
output_shape
({
1
,
7
});
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_shape
));
}
};
...
...
paddle/operators/detection_output_op.h
浏览文件 @
fe177b62
...
...
@@ -40,6 +40,9 @@ class Detection_output_Kernel : public framework::OpKernel<T> {
int
input_num
=
in_loc
->
dims
()[
0
];
int
batch_size
=
in_loc
->
dims
()[
1
];
int
channels
=
in_loc
->
dims
()[
2
];
int
height
=
in_loc
->
dims
()[
3
];
int
weight
=
in_loc
->
dims
()[
4
];
int
loc_sum_size
=
in_loc
->
numel
();
int
conf_sum_size
=
in_conf
->
numel
();
std
::
vector
<
int64_t
>
loc_shape_vec
({
1
,
loc_sum_size
});
...
...
@@ -49,17 +52,62 @@ class Detection_output_Kernel : public framework::OpKernel<T> {
framework
::
DDim
conf_shape
(
framework
::
make_ddim
(
conf_shape_vec
));
framework
::
Tensor
loc_tensor
;
framework
::
Tensor
conf_tensor
;
loc_tensor
.
Resize
(
loc_shape
);
conf_tensor
.
Resize
(
conf_shape
);
loc_tensor
.
mutable_data
<
T
>
(
loc_shape
,
context
.
GetPlace
());
conf_tensor
.
mutable_data
<
T
>
(
conf_shape
,
context
.
GetPlace
());
framework
::
Tensor
loc_cpu
;
framework
::
Tensor
conf_cpu
;
framework
::
Tensor
priorbox_cpu
;
const
T
*
in_loc_data
=
in_loc
->
data
<
T
>
();
const
T
*
in_conf_data
=
in_conf
->
data
<
T
>
();
T
*
loc_data
;
T
*
conf_data
;
const
T
*
priorbox_data
=
in_priorbox
->
data
<
T
>
();
// KNCHW ==> NHWC
if
(
platform
::
is_gpu_place
(
context
.
GetPlace
()))
{
loc_cpu
.
mutable_data
<
T
>
(
in_loc
->
dims
(),
platform
::
CPUPlace
());
framework
::
CopyFrom
(
*
in_loc
,
platform
::
CPUPlace
(),
context
.
device_context
(),
&
loc_cpu
);
in_loc_data
=
loc_cpu
.
data
<
T
>
();
conf_cpu
.
mutable_data
<
T
>
(
in_conf
->
dims
(),
platform
::
CPUPlace
());
framework
::
CopyFrom
(
*
in_conf
,
platform
::
CPUPlace
(),
context
.
device_context
(),
&
conf_cpu
);
in_conf_data
=
conf_cpu
.
data
<
T
>
();
priorbox_cpu
.
mutable_data
<
T
>
(
in_priorbox
->
dims
(),
platform
::
CPUPlace
());
framework
::
CopyFrom
(
*
in_priorbox
,
platform
::
CPUPlace
(),
context
.
device_context
(),
&
priorbox_cpu
);
priorbox_data
=
priorbox_cpu
.
data
<
T
>
();
loc_tensor
.
mutable_data
<
T
>
(
loc_shape
,
platform
::
CPUPlace
());
conf_tensor
.
mutable_data
<
T
>
(
conf_shape
,
platform
::
CPUPlace
());
}
T
*
loc_tensor_data
=
loc_tensor
.
data
<
T
>
();
T
*
conf_tensor_data
=
conf_tensor
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
input_num
;
++
i
)
{
math
::
appendWithPermute
<
T
>
(
*
in_loc
,
&
loc_tensor
);
math
::
appendWithPermute
<
T
>
(
*
in_conf
,
&
conf_tensor
);
math
::
appendWithPermute
<
T
>
(
in_loc_data
,
input_num
,
batch_size
,
channels
,
height
,
weight
,
loc_tensor_data
);
math
::
appendWithPermute
<
T
>
(
in_conf_data
,
input_num
,
batch_size
,
channels
,
height
,
weight
,
conf_tensor_data
);
}
loc_data
=
loc_tensor
.
data
<
T
>
();
if
(
platform
::
is_gpu_place
(
context
.
GetPlace
()))
{
framework
::
Tensor
conf_gpu
;
conf_gpu
.
Resize
(
conf_shape
);
conf_gpu
.
mutable_data
<
T
>
(
conf_shape
,
context
.
GetPlace
());
framework
::
CopyFrom
(
conf_tensor
,
platform
::
GPUPlace
(),
context
.
device_context
(),
&
conf_gpu
);
// softmax
math
::
SoftmaxFunctor
<
Place
,
T
>
()(
context
.
device_context
(),
&
conf_gpu
,
&
conf_gpu
);
conf_tensor
.
mutable_data
<
T
>
(
conf_gpu
.
dims
(),
platform
::
CPUPlace
());
framework
::
CopyFrom
(
conf_gpu
,
platform
::
CPUPlace
(),
context
.
device_context
(),
&
conf_tensor
);
}
else
{
// softmax
math
::
SoftmaxFunctor
<
Place
,
T
>
()(
context
.
device_context
(),
&
conf_tensor
,
&
conf_tensor
);
}
// softmax
math
::
SoftmaxFunctor
<
Place
,
T
>
()(
context
.
device_context
(),
&
conf_tensor
,
&
conf_tensor
);
conf_data
=
conf_tensor
.
data
<
T
>
();
// get decode bboxes
size_t
num_priors
=
in_priorbox
->
numel
()
/
8
;
std
::
vector
<
std
::
vector
<
operators
::
math
::
BBox
<
T
>>>
all_decoded_bboxes
;
...
...
@@ -69,29 +117,26 @@ class Detection_output_Kernel : public framework::OpKernel<T> {
size_t
prior_offset
=
i
*
8
;
size_t
loc_pred_offset
=
n
*
num_priors
*
4
+
i
*
4
;
std
::
vector
<
math
::
BBox
<
T
>>
prior_bbox_vec
;
math
::
getBBoxFromPriorData
<
T
>
(
in_priorbox
->
data
<
T
>
()
+
prior_offset
,
1
,
math
::
getBBoxFromPriorData
<
T
>
(
priorbox_data
+
prior_offset
,
1
,
prior_bbox_vec
);
std
::
vector
<
std
::
vector
<
T
>>
prior_bbox_var
;
math
::
getBBoxVarFromPriorData
<
T
>
(
in_priorbox
->
data
<
T
>
()
+
prior_offset
,
1
,
prior_bbox_var
);
math
::
getBBoxVarFromPriorData
<
T
>
(
priorbox_data
+
prior_offset
,
1
,
prior_bbox_var
);
std
::
vector
<
T
>
loc_pred_data
;
for
(
size_t
j
=
0
;
j
<
4
;
++
j
)
loc_pred_data
.
push_back
(
*
(
loc_tensor
.
data
<
T
>
()
+
loc_pred_offset
+
j
));
loc_pred_data
.
push_back
(
*
(
loc_data
+
loc_pred_offset
+
j
));
math
::
BBox
<
T
>
bbox
=
math
::
decodeBBoxWithVar
<
T
>
(
prior_bbox_vec
[
0
],
prior_bbox_var
[
0
],
loc_pred_data
);
decoded_bboxes
.
push_back
(
bbox
);
}
all_decoded_bboxes
.
push_back
(
decoded_bboxes
);
}
std
::
vector
<
std
::
map
<
size_t
,
std
::
vector
<
size_t
>>>
all_indices
;
int
num_kept
=
math
::
getDetectionIndices
<
T
>
(
conf_
tensor
.
data
<
T
>
(),
num_priors
,
num_classes
,
background_label_id
,
batch_size
,
confidence_threshold
,
nms_top_k
,
nms_threshold
,
top_k
,
conf_
data
,
num_priors
,
num_classes
,
background_label_id
,
batch_size
,
confidence_threshold
,
nms_top_k
,
nms_threshold
,
top_k
,
all_decoded_bboxes
,
&
all_indices
);
framework
::
Tensor
out_tmp
;
if
(
num_kept
<=
0
)
{
std
::
vector
<
int64_t
>
out_shape_vec
({
0
,
0
});
framework
::
DDim
out_shape
(
framework
::
make_ddim
(
out_shape_vec
));
...
...
@@ -100,14 +145,20 @@ class Detection_output_Kernel : public framework::OpKernel<T> {
}
std
::
vector
<
int64_t
>
out_shape_vec
({
num_kept
,
7
});
framework
::
DDim
out_shape
(
framework
::
make_ddim
(
out_shape_vec
));
out_tmp
.
mutable_data
<
T
>
(
out_shape
,
context
.
GetPlace
());
T
*
out_data
=
out_tmp
.
data
<
T
>
();
math
::
getDetectionOutput
<
T
>
(
conf_tensor
.
data
<
T
>
(),
num_kept
,
num_priors
,
num_classes
,
batch_size
,
all_indices
,
all_decoded_bboxes
,
out_data
);
out
->
mutable_data
<
T
>
(
out_shape
,
context
.
GetPlace
());
out
->
ShareDataWith
(
out_tmp
);
framework
::
Tensor
out_cpu
;
T
*
out_data
=
out
->
data
<
T
>
();
if
(
platform
::
is_gpu_place
(
context
.
GetPlace
()))
{
out_cpu
.
mutable_data
<
T
>
(
out
->
dims
(),
platform
::
CPUPlace
());
out_data
=
out_cpu
.
data
<
T
>
();
}
math
::
getDetectionOutput
<
T
>
(
conf_data
,
num_kept
,
num_priors
,
num_classes
,
batch_size
,
all_indices
,
all_decoded_bboxes
,
out_data
);
if
(
platform
::
is_gpu_place
(
context
.
GetPlace
()))
{
framework
::
CopyFrom
(
out_cpu
,
platform
::
GPUPlace
(),
context
.
device_context
(),
out
);
}
}
};
}
// namespace operators
...
...
paddle/operators/math/detection_util.h
浏览文件 @
fe177b62
...
...
@@ -50,27 +50,23 @@ struct BBox {
};
// KNCHW ==> NHWC
template
<
typename
T
>
int
appendWithPermute
(
const
framework
::
Tensor
&
input
,
framework
::
Tensor
*
output
)
{
const
int
input_nums
=
input
.
dims
()[
0
];
const
int
batch_size
=
input
.
dims
()[
1
];
const
int
channels
=
input
.
dims
()[
2
];
const
int
height
=
input
.
dims
()[
3
];
const
int
weight
=
input
.
dims
()[
4
];
int
appendWithPermute
(
const
T
*
input_data
,
int
input_nums
,
int
batch_size
,
int
channels
,
int
height
,
int
weight
,
T
*
output_data
)
{
int
image_size
=
height
*
weight
;
int
numel
=
input_nums
*
batch_size
*
channels
*
height
*
weight
;
int
offset
=
0
;
for
(
int
p
=
0
;
p
<
input_nums
;
++
p
)
{
int
in_p_offset
=
p
*
batch_size
*
channels
*
image_size
;
for
(
int
n
=
0
;
n
<
batch_size
;
++
n
)
{
int
in_n_offset
=
n
*
channels
*
image_size
;
int
out_n_offset
=
n
*
input
.
numel
()
/
batch_size
+
offset
;
int
out_n_offset
=
n
*
numel
/
batch_size
+
offset
;
int
in_stride
=
image_size
;
int
out_stride
=
channels
;
const
T
*
in_data
=
input
.
data
<
T
>
()
+
in_p_offset
+
in_n_offset
;
T
*
out_data
=
output
->
data
<
T
>
()
+
out_n_offset
;
for
(
int
i
=
0
;
i
<
channels
;
++
i
)
{
for
(
int
c
=
0
;
c
<
image_size
;
++
c
)
{
out_data
[
out_stride
*
c
+
i
]
=
in_data
[
i
*
in_stride
+
c
];
const
T
*
in_data
=
input
_data
+
in_p_offset
+
in_n_offset
;
T
*
out_data
=
output
_data
+
out_n_offset
;
for
(
int
c
=
0
;
c
<
channels
;
++
c
)
{
for
(
int
i
=
0
;
i
<
image_size
;
++
i
)
{
out_data
[
out_stride
*
i
+
c
]
=
in_data
[
c
*
in_stride
+
i
];
}
}
}
...
...
python/paddle/v2/fluid/tests/test_detection_output_op.py
0 → 100644
浏览文件 @
fe177b62
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
class
TestUnpoolOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"detection_output"
self
.
init_test_case
()
#loc = np.zeros((1, 4, 4, 1, 1))
#conf = np.zero((1, 4, 2, 1, 1))
loc
=
np
.
array
([[[[[
0.1
]],
[[
0.1
]],
[[
0.1
]],
[[
0.1
]]],
[[[
0.1
]],
[[
0.1
]],
[[
0.1
]],
[[
0.1
]]],
[[[
0.1
]],
[[
0.1
]],
[[
0.1
]],
[[
0.1
]]],
[[[
0.1
]],
[[
0.1
]],
[[
0.1
]],
[[
0.1
]]]]])
conf
=
np
.
array
([[[[[
0.1
]],
[[
0.9
]]],
[[[
0.2
]],
[[
0.8
]]]],
[[[[
0.3
]],
[[
0.7
]]],
[[[
0.4
]],
[[
0.6
]]]]])
priorbox
=
np
.
array
([
0.1
,
0.1
,
0.5
,
0.5
,
0.1
,
0.1
,
0.2
,
0.2
,
\
0.2
,
0.2
,
0.6
,
0.6
,
0.1
,
0.1
,
0.2
,
0.2
,
\
0.3
,
0.3
,
0.7
,
0.7
,
0.1
,
0.1
,
0.2
,
0.2
,
\
0.4
,
0.4
,
0.8
,
0.8
,
0.1
,
0.1
,
0.2
,
0.2
])
output
=
np
.
array
([
0
,
1
,
0.68997443
,
0.099959746
,
0.099959746
,
\
0.50804031
,
0.50804031
])
self
.
inputs
=
{
'Loc'
:
loc
.
astype
(
'float32'
),
'Conf'
:
conf
.
astype
(
'float32'
),
'PriorBox'
:
priorbox
.
astype
(
'float32'
)
}
self
.
attrs
=
{
'num_classes'
:
self
.
num_classes
,
'top_k'
:
self
.
top_k
,
'nms_top_k'
:
self
.
nms_top_k
,
'background_label_id'
:
self
.
background_label_id
,
'nms_threshold'
:
self
.
nms_threshold
,
'confidence_threshold'
:
self
.
confidence_threshold
,
}
self
.
outputs
=
{
'Out'
:
output
.
astype
(
'float32'
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
init_test_case
(
self
):
self
.
num_classes
=
2
self
.
top_k
=
10
self
.
nms_top_k
=
20
self
.
background_label_id
=
0
self
.
nms_threshold
=
0.01
self
.
confidence_threshold
=
0.01
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录