pybind.cc 16.8 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Q
qijun 已提交
15 16
#include "paddle/pybind/protobuf.h"

Q
Qiao Longfei 已提交
17
#include "paddle/framework/backward.h"
F
fengjiayi 已提交
18
#include "paddle/framework/executor.h"
Q
qijun 已提交
19
#include "paddle/framework/feed_fetch_method.h"
D
dangqingqing 已提交
20
#include "paddle/framework/lod_tensor.h"
21
#include "paddle/framework/tensor_array.h"
Z
zchen0211 已提交
22
#include "paddle/operators/cond_op.h"
23
#include "paddle/operators/dynamic_recurrent_op.h"
Y
Yan Chunwei 已提交
24
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
25
#include "paddle/operators/recurrent_op.h"
Q
qijun 已提交
26
#include "paddle/platform/enforce.h"
Q
qijun 已提交
27
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
28
#include "paddle/pybind/exception.h"
Q
qijun 已提交
29
#include "paddle/pybind/pybind.h"
30
#include "paddle/pybind/tensor_py.h"
31
#include "paddle/string/to_string.h"
32

33
namespace paddle {
34
namespace pybind {
35 36 37 38 39
static size_t UniqueIntegerGenerator() {
  static std::atomic<size_t> generator;
  return generator.fetch_add(1);
}

Q
qijun 已提交
40
bool IsCompileGPU() {
41
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
42 43 44 45 46 47
  return false;
#else
  return true;
#endif
}

48
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
49
  py::module m("core", "C++ core of PaddlePaddle");
50

51 52 53 54
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
55 56
  BindException(m);

57 58 59
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
60
      .def("get_dims",
61
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
62
      .def("set_dims",
Q
qijun 已提交
63
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
64
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
65 66
           })
      .def("alloc_float",
Y
Yu Yang 已提交
67
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
68
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
69
           })
Q
qijun 已提交
70
      .def("alloc_float",
Y
Yu Yang 已提交
71
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
72
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
73 74
           })
      .def("alloc_int",
Y
Yu Yang 已提交
75
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
76
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
77
           })
Q
qijun 已提交
78
      .def("alloc_int",
Y
Yu Yang 已提交
79
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
80
             self.mutable_data<int>(place);
Q
qijun 已提交
81
           })
Y
Yu Yang 已提交
82 83
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
84
      .def("set", PyCPUTensorSetFromArray<double>)
85
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
86 87
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
88
      .def("set", PyCUDATensorSetFromArray<double>)
Q
qijun 已提交
89
#endif
90
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
91 92 93 94 95
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
96

97
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
98 99
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
100 101 102
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
103
#ifndef PADDLE_WITH_CUDA
104
            new (&instance) LoDTensor(lod);
105
#else
Y
Yu Yang 已提交
106
             LoD new_lod;
107 108
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
109
             new (&instance) LoDTensor(new_lod);
110
#endif
111
          })
D
dangqingqing 已提交
112
      .def("set_lod",
113
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
114
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
115
             self.set_lod(lod);
116
#else
Y
Yu Yang 已提交
117
             LoD new_lod;
118 119 120 121
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
122
           })
123
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
124
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
125
        return self.lod();
126 127 128 129 130
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
Y
Yu Yang 已提交
131
               [](Vector<size_t> item) ->
132 133 134 135 136 137 138 139
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
140 141
      });

142
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
143 144 145

All parameter, weight, gradient are variables in Paddle.
)DOC")
146
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
147
      .def("set_int",
148 149
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
150 151 152 153 154 155 156
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
157
      .def("get_tensor",
158 159
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
160 161
           },
           py::return_value_policy::reference)
Y
Yan Chunwei 已提交
162
      .def("get_net",
D
dongzhihong 已提交
163 164
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
165
           },
Y
Yu Yang 已提交
166
           py::return_value_policy::reference);
167

168
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
169
      .def("var",
170
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
171
             return self.Var(name);
Y
Yu Yang 已提交
172
           },
173
           py::return_value_policy::reference)
174
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
175
      .def(py::init<>())
176
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
177
           py::return_value_policy::reference)
178
      .def("drop_kids", &Scope::DropKids);
179

Y
Yu Yang 已提交
180 181
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
182 183
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
Y
Yu Yang 已提交
184 185 186 187

    OpInfoMap::Instance().IterAllInfo([&ret_values](const std::string &type,
                                                    const OpInfo &info) {
      if (!info.HasOpProtoAndChecker()) return;
Y
Yu Yang 已提交
188
      std::string str;
Y
Yu Yang 已提交
189
      PADDLE_ENFORCE(info.Proto().SerializeToString(&str),
Y
Yu Yang 已提交
190
                     "Serialize OpProto Error. This could be a bug of Paddle.");
Y
Yu Yang 已提交
191 192
      ret_values.emplace_back(str);
    });
Y
Yu Yang 已提交
193 194
    return ret_values;
  });
195 196 197
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
198 199
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
200
  // clang-format off
Y
Yu Yang 已提交
201
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
202 203
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
204
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
205 206 207 208 209
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
210
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
211
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
212
#else
Q
qijun 已提交
213
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
214
#endif
Q
qijun 已提交
215
                  });
Q
qijun 已提交
216
  // clang-format on
Q
qijun 已提交
217

218 219 220
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
221

222 223 224
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
225

Y
Yu Yang 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
                    return OpRegistry::CreateOp(desc);
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
242
      .def("run",
243
           [](OperatorBase &self, const Scope &scope,
244 245 246 247
              const platform::DeviceContext &dev_ctx) {
             self.Run(scope, dev_ctx);
             dev_ctx.Wait();
           })
Y
Yu Yang 已提交
248 249 250 251 252 253 254
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
255 256
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
257
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
258
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
259 260 261 262
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
263

Y
Yu Yang 已提交
264 265 266 267 268 269 270
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
271 272
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
273 274 275 276
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
277

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
  py::class_<framework::TensorArray>(m, "TensorArray")
      .def("__init__",
           [](TensorArray &instance) { new (&instance) TensorArray(); })
      .def("read",
           [](TensorArray &self, size_t index) { return self.Read(index); })
      .def("write", [](TensorArray &self, size_t index,
                       LoDTensor &value) { self.Write(index, value); })
      .def("write_shared",
           [](TensorArray &self, size_t index, const LoDTensor &value) {
             self.WriteShared(index, value);
           })
      .def("size", [](TensorArray &self) { return self.size(); })
      .def("pack",
           [](TensorArray &self, size_t level,
              const std::vector<std::vector<size_t>> &meta_info,
              const std::vector<std::vector<size_t>> &lod) {
             std::vector<DySeqMeta> meta;
             for (auto &info : meta_info) {
               PADDLE_ENFORCE_EQ(info.size(), 3UL);
               meta.emplace_back(info[0], info[1], info[2]);
             }
#ifndef PADDLE_WITH_CUDA
             return self.Pack(level, meta, lod);
#else
             LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return self.Pack(level, meta, new_lod);
#endif
           })
      .def("unpack",
           [](TensorArray &self, const LoDTensor &source, int level,
              bool length_descend) {
             auto metas = self.Unpack(source, level, length_descend);
             std::vector<std::vector<size_t>> meta_info;
             for (auto meta : metas) {
               meta_info.emplace_back(
                   std::vector<size_t>({meta.begin, meta.end, meta.ori_idx}));
             }
             return meta_info;
           })
      .def("stack", [](TensorArray &self) { return self.Stack(); })
      .def("unstack",
           [](TensorArray &self, const LoDTensor &source) {
             return self.Unstack(source);
           })
      .def("unstack_shared", [](TensorArray &self, const LoDTensor &source) {
        return self.UnstackShared(source);
      });

Y
Yan Chunwei 已提交
328
  // recurrent_op
Y
Yu Yang 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341
  py::class_<operators::RecurrentOp, OperatorBase>(m, "RecurrentOp")
      .def_static(
          "create",
          [](py::bytes protobin) -> operators::RecurrentOp * {
            OpDesc desc;
            PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                           "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE(desc.IsInitialized(),
                           "User OpDesc is not initialized, reason %s",
                           desc.InitializationErrorString());
            auto rnn_op = OpRegistry::CreateOp(desc);
            return static_cast<operators::RecurrentOp *>(rnn_op.release());
          })
342 343 344 345
      .def("set_stepnet", [](operators::RecurrentOp &self,
                             const operators::NetOp &net) -> void {
        self.set_stepnet(net.Clone());
      });
Y
Yan Chunwei 已提交
346

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
  py::class_<operators::DynamicRecurrentOp, OperatorBase>(m,
                                                          "DynamicRecurrentOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::DynamicRecurrentOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
                    auto rnn_op = OpRegistry::CreateOp(desc);
                    return static_cast<operators::DynamicRecurrentOp *>(
                        rnn_op.release());
                  })
      .def("set_stepnet",
           [](operators::DynamicRecurrentOp &self, const operators::NetOp &net)
               -> void { self.SetStepNet(net.Clone()); })
      .def("get_state",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
               -> const TensorArray & { return self.state(name); })
      .def("get_step_input",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
               -> const TensorArray & { return self.step_input(name); })
      .def("get_step_output",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
               -> const TensorArray & { return self.step_output(name); });

Z
cond op  
zchen0211 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
                    auto cond_op = OpRegistry::CreateOp(desc);
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
396 397 398 399 400 401 402 403
  py::class_<framework::Executor>(m, "Executor")
      .def(py::init<std::vector<platform::Place> &>())
      .def("run",
           [](Executor &self, const ProgramDesc &program_desc, int block_id) {
             framework::Scope &global_scope = GetGlobalScope();
             self.Run(program_desc, &global_scope, block_id);
           });

404 405
  m.def("unique_integer", UniqueIntegerGenerator);

Q
qijun 已提交
406
  m.def("is_compile_gpu", IsCompileGPU);
Q
qijun 已提交
407 408 409 410
  m.def("set_feed_variable_float", framework::SetFeedVariable<float>);
  m.def("set_feed_variable_double", framework::SetFeedVariable<double>);
  m.def("set_feed_variable_int", framework::SetFeedVariable<int>);
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
411

F
fengjiayi 已提交
412 413 414 415
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Y
Yu Yang 已提交
416

417
  return m.ptr();
L
Luo Tao 已提交
418
}
419
}  // namespace pybind
420
}  // namespace paddle