io.py 38.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
F
fengjiayi 已提交
16
import contextlib
17
import multiprocessing
M
minqiyang 已提交
18
import six
Y
yuyang18 已提交
19
import threading
D
dzhwinter 已提交
20

Y
yuyang18 已提交
21
from ..data_feeder import DataFeeder
22 23
from .control_flow import BlockGuard
from .layer_function_generator import templatedoc
Y
yuyang18 已提交
24
from .. import core
Y
Refine  
Yu Yang 已提交
25
from ..executor import global_scope
Y
yuyang18 已提交
26
from ..framework import convert_np_dtype_to_dtype_, default_main_program, \
27
    default_startup_program, program_guard, Program, Variable
Y
yuyang18 已提交
28 29
from ..layer_helper import LayerHelper
from ..unique_name import generate as unique_name
Y
Yu Yang 已提交
30

Y
Yu Yang 已提交
31
__all__ = [
Y
yuyang 已提交
32
    'data', 'open_files', 'read_file', 'shuffle', 'batch', 'double_buffer',
Q
Qiao Longfei 已提交
33
    'random_data_generator', 'py_reader', 'Preprocessor', 'load'
Y
Yu Yang 已提交
34
]
Y
Yu Yang 已提交
35 36 37 38 39 40 41 42 43 44


def data(name,
         shape,
         append_batch_size=True,
         dtype='float32',
         lod_level=0,
         type=core.VarDesc.VarType.LOD_TENSOR,
         stop_gradient=True):
    """
K
kavyasrinet 已提交
45
    **Data Layer**
Y
Yu Yang 已提交
46

K
kavyasrinet 已提交
47
    This function takes in the input and based on whether data has
C
caoying03 已提交
48
    to be returned back as a minibatch, it creates the global variable by using
Y
Yu Yang 已提交
49
    the helper functions. The global variables can be accessed by all the
C
caoying03 已提交
50
    following operators in the graph.
Y
Yu Yang 已提交
51 52 53 54

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

K
kavyasrinet 已提交
55 56 57
    Args:
       name(str): The name/alias of the function
       shape(list): Tuple declaring the shape.
X
Xin Pan 已提交
58 59 60 61 62
       append_batch_size(bool):
          1. If true, it prepends -1 to the shape.
            For example if shape=[1], the resulting shape is [-1, 1].
          2. If shape contains -1, such as shape=[1, -1],
            append_batch_size will be enforced to be be False (ineffective).
K
kavyasrinet 已提交
63 64 65 66 67 68 69 70 71 72 73 74
       dtype(int|float): The type of data : float32, float_16, int etc
       type(VarType): The output type. By default it is LOD_TENSOR.
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
       stop_gradient(bool): A boolean that mentions whether gradient should flow.

    Returns:
        Variable: The global variable that gives access to the data.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
75 76 77
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
M
minqiyang 已提交
78
    for i in six.moves.range(len(shape)):
Y
Yu Yang 已提交
79 80 81 82 83 84 85 86 87
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

Y
Yu Yang 已提交
88
    data_var = helper.create_global_variable(
Y
Yu Yang 已提交
89 90 91 92 93
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
F
fengjiayi 已提交
94 95
        lod_level=lod_level,
        is_data=True)
Y
Yu Yang 已提交
96
    return data_var
T
typhoonzero 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
Y
yi.wu 已提交
122
    **ListenAndServ Layer**
T
typhoonzero 已提交
123

Y
yi.wu 已提交
124 125 126 127 128 129 130 131 132
    ListenAndServ is used to create a rpc server bind and listen
    on specific TCP port, this server will run the sub-block when
    received variables from clients.

    Args:
        endpoint(string): IP:port string which the server will listen on.
        inputs(list): a list of variables that the server will get from clients.
        fan_in(int): how many client are expected to report to this server, default: 1.
        optimizer_mode(bool): whether to run the server as a parameter server, default: True.
Y
update  
yi.wu 已提交
133

Y
yi.wu 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    Examples:
        .. code-block:: python

            with fluid.program_guard(main):
                serv = layers.ListenAndServ(
                    "127.0.0.1:6170", ["X"], optimizer_mode=False)
                with serv.do():
                    x = layers.data(
                        shape=[32, 32],
                        dtype='float32',
                        name="X",
                        append_batch_size=False)
                    fluid.initializer.Constant(value=1.0)(x, main.global_block())
                    layers.scale(x=x, scale=10.0, out=out_var)

Y
yi.wu 已提交
149 150
            exe = fluid.Executor(place)
            exe.run(main)
T
typhoonzero 已提交
151 152
    """

Y
Yancey1989 已提交
153
    def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
154
        self.helper = LayerHelper("listen_and_serv")
Y
Yancey1989 已提交
155
        self.inputs = inputs
T
typhoonzero 已提交
156 157 158
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
159 160
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
161
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
175 176 177 178 179 180 181 182
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
183 184
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
185 186 187

        return params, grads

T
typhoonzero 已提交
188 189 190 191 192 193 194
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
195 196 197 198 199 200
    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        parent_block.append_op(
201
            type='listen_and_serv',
Y
Yancey1989 已提交
202
            inputs={"X": self.inputs},
T
typhoonzero 已提交
203 204 205 206
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
Y
Yancey1989 已提交
207 208 209
                'optimize_blocks': [
                    current_block
                ],  # did not support multiple optimize blocks in layers
210
                'sync_mode': True,  # did not support async now in layers
Q
qiaolongfei 已提交
211
                'grad_to_block_id': [""]
T
typhoonzero 已提交
212 213 214
            })


215
def Send(endpoints, send_vars, dummy_output=None, sync=True):
T
typhoonzero 已提交
216
    """
Y
yi.wu 已提交
217 218
    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
T
typhoonzero 已提交
219 220

    Args:
Y
yi.wu 已提交
221
        endpoints (str): comma seperated IP:PORT pairs in the order
T
typhoonzero 已提交
222
                   of send_vars to send
Y
yi.wu 已提交
223 224
        send_vars (list): variables to send to server
        sync (bool): whether to wait the request finish
T
typhoonzero 已提交
225 226 227 228

    """
    assert (type(send_vars) == list)

229 230 231 232 233 234 235
    if dummy_output is None:
        dummy_output = []
    elif isinstance(dummy_output, Variable):
        dummy_output = [dummy_output]

    assert (type(dummy_output) == list)

T
typhoonzero 已提交
236
    epmap = endpoints.split(",")
T
typhoonzero 已提交
237
    endpoints = list(set(epmap))
T
typhoonzero 已提交
238 239

    helper = LayerHelper("Send", **locals())
Y
Yancey1989 已提交
240
    rpc_op_role_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
Y
Yancey1989 已提交
241

T
typhoonzero 已提交
242 243 244
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
245
        outputs={"Out": dummy_output},
Y
Yancey1989 已提交
246 247 248 249 250
        attrs={
            "endpoints": endpoints,
            "epmap": epmap,
            rpc_op_role_name: core.op_proto_and_checker_maker.OpRole.RPC
        })
Y
yi.wu 已提交
251
    if sync:
W
Wu Yi 已提交
252 253 254 255 256
        helper.append_op(
            type="send_barrier",
            inputs={"X": dummy_output},
            outputs={"Out": []},
            attrs={"endpoints": endpoints})
257 258


259
def Recv(endpoints, get_vars, dummy_input=None, sync=True):
260
    """
Y
yi.wu 已提交
261
    Receive variables from server side
262 263

    Args:
Y
yi.wu 已提交
264
        endpoints (str): comma seperated IP:PORT pairs in the order
265
                   of send_vars to send
Y
yi.wu 已提交
266 267
        get_vars (list): vars to get from server after send completes.
        sync (bool): whether to wait the request finish
268

Y
yi.wu 已提交
269 270
    Returns:
        list: list of received variables
271 272 273
    """
    assert (type(get_vars) == list)

274 275 276 277 278 279 280
    if dummy_input is None:
        dummy_input = []
    elif isinstance(dummy_input, Variable):
        dummy_input = [dummy_input]

    assert (type(dummy_input) == list)

281 282 283 284 285 286
    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
    helper.append_op(
        type="recv",
287
        inputs={"X": dummy_input},
288 289 290
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints,
               "epmap": epmap})
Y
yi.wu 已提交
291
    if sync:
W
Wu Yi 已提交
292 293 294 295
        helper.append_op(
            type="fetch_barrier",
            outputs={"Out": get_vars},
            attrs={"endpoints": endpoints})
Y
yi.wu 已提交
296
    return get_vars
Y
Yu Yang 已提交
297 298


Y
Refine  
Yu Yang 已提交
299 300 301 302 303 304 305 306 307 308
def monkey_patch_reader_methods(reader):
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def reset():
        return __get_reader__().reset()

    reader.reset = reset
Y
Yu Yang 已提交
309 310
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
311 312 313
    return reader


Y
Yu Yang 已提交
314 315 316 317 318
def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
    new_var.persistable = True
F
fengjiayi 已提交
319 320 321 322
    return new_var


def _copy_reader_create_op_(block, op):
F
fengjiayi 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
    input_param_names = op.input_names
    new_input_map = {}
    for param_name in input_param_names:
        new_input_map[param_name] = []
        arg_names = op.input(param_name)
        for arg_name in arg_names:
            new_input_map[param_name].append(block.var(arg_name))

    output_param_names = op.output_names
    new_output_map = {}
    for param_name in output_param_names:
        new_output_map[param_name] = []
        arg_names = op.output(param_name)
        for arg_name in arg_names:
            new_output_map[param_name].append(block.var(arg_name))

F
fengjiayi 已提交
339
    new_op = block.append_op(
F
fengjiayi 已提交
340 341 342
        type=op.type,
        inputs=new_input_map,
        outputs=new_output_map,
J
JiayiFeng 已提交
343
        attrs=op.all_attrs())
F
fengjiayi 已提交
344
    return new_op
Y
Yu Yang 已提交
345 346


Y
yuyang18 已提交
347
@templatedoc(op_type='create_recordio_file_reader')
F
fengjiayi 已提交
348 349 350 351 352
def open_recordio_file(filename,
                       shapes,
                       lod_levels,
                       dtypes,
                       pass_num=1,
F
fengjiayi 已提交
353
                       for_parallel=True):
F
fengjiayi 已提交
354
    """
Y
yuyang18 已提交
355
    ${comment}
F
fengjiayi 已提交
356 357

    Args:
Y
yuyang18 已提交
358
       filename(${filename_type}): ${filename_comment}.
F
fengjiayi 已提交
359
       shapes(list): List of tuples which declaring data shapes.
Y
yuyang18 已提交
360
       lod_levels(${lod_levels_type}): ${lod_levels_comment}.
F
fengjiayi 已提交
361
       dtypes(list): List of strs which declaring data type.
F
fengjiayi 已提交
362
       pass_num(int): Number of passes to run.
F
fengjiayi 已提交
363 364 365 366
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
Y
yuyang18 已提交
367
       ${out_comment}.
F
fengjiayi 已提交
368 369 370

    Examples:

Y
yuyang18 已提交
371 372 373 374 375 376 377 378
        >>> import paddle.fluid as fluid
        >>> reader = fluid.layers.io.open_recordio_file(
        >>>                               filename='./data.recordio',
        >>>                               shapes=[(3,224,224), (1)],
        >>>                               lod_levels=[0, 0],
        >>>                               dtypes=['float32', 'int64'])
        >>> # Via the reader, we can use 'read_file' layer to get data:
        >>> image, label = fluid.layers.io.read_file(reader)
F
fengjiayi 已提交
379
    """
Y
Yu Yang 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('open_recordio_file')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_recordio_file_reader',
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'filename': filename,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
F
fengjiayi 已提交
404 405
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)
F
fengjiayi 已提交
406 407 408 409

    if pass_num > 1:
        main_prog_var = multi_pass(reader=main_prog_var, pass_num=pass_num)

F
fengjiayi 已提交
410
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
411 412


F
fengjiayi 已提交
413 414 415 416 417
def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
    """
    Create a uniform random data generator

    This layer returns a Reader Variable.
418 419 420
    Instead of opening a file and reading data from it, this
    Reader Variable generates float uniform random data by itself.
    It can be used as a dummy reader to test a network without
F
fengjiayi 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
    opening a real file.

    Args:
       low(float): The lower bound of data's uniform distribution.
       high(float): The upper bound of data's uniform distribution.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
       Variable: A Reader Variable from which we can get random data.

    Examples:

436
        .. code-block:: python
F
fengjiayi 已提交
437

438 439 440 441 442 443 444
            reader = fluid.layers.random_data_generator(
                                             low=0.0,
                                             high=1.0,
                                             shapes=[[3,224,224], [1]],
                                             lod_levels=[0, 0])
            # Via the reader, we can use 'read_file' layer to get data:
            image, label = fluid.layers.read_file(reader)
F
fengjiayi 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
    """
    dtypes = [core.VarDesc.VarType.FP32] * len(shapes)
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('random_data_generator')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_random_data_generator',
        outputs={'Out': [startup_var]},
        attrs={
            'low': low,
            'high': high,
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    return monkey_patch_reader_methods(main_prog_var)


Y
yuyang18 已提交
477 478 479 480 481 482
def py_reader(capacity,
              shapes,
              dtypes,
              lod_levels=None,
              name=None,
              use_double_buffer=True):
S
sneaxiy 已提交
483
    """
484
    Create a Python reader for data feeding in Python
F
fengjiayi 已提交
485

486
    This layer returns a Reader Variable.
487 488
    The Reader provides :code:`decorate_paddle_reader()` and
    :code:`decorate_tensor_provider()` to set a Python generator as the data
489 490 491 492 493 494 495 496
    source in Python side. When :code:`Executor::Run()` is invoked in C++
    side, the data from the generator would be read automatically. Unlike
    :code:`DataFeeder.feed()`, the data reading process and
    :code:`Executor::Run()` process can run in parallel using
    :code:`py_reader`. The :code:`start()` method of the Reader should be
    called when each pass begins, while the :code:`reset()` method should be
    called when the pass ends and :code:`fluid.core.EOFException` raises.
    Note that :code:`Program.clone()` method cannot clone :code:`py_reader`.
S
sneaxiy 已提交
497 498

    Args:
499
       capacity(int): The buffer capacity maintained by :code:`py_reader`.
Y
yuyang18 已提交
500 501 502 503 504
       shapes(list|tuple): List of tuples which declaring data shapes.
       dtypes(list|tuple): List of strs which declaring data type.
       lod_levels(list|tuple): List of ints which declaring data lod_level.
       name(basestring): The prefix Python queue name and Reader name. None will
            be generated automatically.
505
       use_double_buffer(bool): Whether use double buffer or not.
S
sneaxiy 已提交
506 507

    Returns:
508
       Variable: A Reader from which we can get feeding data.
S
sneaxiy 已提交
509 510 511

    Examples:

512
        1. The basic usage of :code:`py_reader` is as follows:
S
sneaxiy 已提交
513

514 515 516 517 518 519 520
        >>> import paddle.fluid as fluid
        >>> import paddle.dataset.mnist as mnist
        >>>
        >>> reader = fluid.layers.py_reader(capacity=64,
        >>>                                 shapes=[(-1,3,224,224), (-1,1)],
        >>>                                 dtypes=['float32', 'int64'])
        >>> reader.decorate_paddle_reader(
X
Xin Pan 已提交
521
        >>>     paddle.reader.shuffle(paddle.batch(mnist.train())
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
        >>>
        >>> img, label = fluid.layers.read_file(reader)
        >>> loss = network(img, label) # some network definition
        >>>
        >>> fluid.Executor(fluid.CUDAPlace(0)).run(fluid.default_startup_program())
        >>>
        >>> exe = fluid.ParallelExecutor(use_cuda=True, loss_name=loss.name)
        >>> for epoch_id in range(10):
        >>>     reader.start()
        >>>     try:
        >>>         while True:
        >>>             exe.run(fetch_list=[loss.name])
        >>>     except fluid.core.EOFException:
        >>>         reader.reset()

        2. When training and testing are both performed, two different
        :code:`py_reader` should be created with different names, e.g.:

        >>> import paddle.fluid as fluid
        >>> import paddle.dataset.mnist as mnist
        >>>
        >>> def network(reader):
        >>>     img, label = fluid.layers.read_file(reader)
        >>>     # Here, we omitted the network definition
        >>>     return loss
        >>>
        >>> train_reader = fluid.layers.py_reader(capacity=64,
        >>>                                       shapes=[(-1,3,224,224), (-1,1)],
        >>>                                       dtypes=['float32', 'int64'],
        >>>                                       name='train_reader')
        >>> train_reader.decorate_paddle_reader(
X
Xin Pan 已提交
553
        >>>     paddle.reader.shuffle(paddle.batch(mnist.train())
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
        >>>
        >>> test_reader = fluid.layers.py_reader(capacity=32,
        >>>                                      shapes=[(-1,3,224,224), (-1,1)],
        >>>                                      dtypes=['float32', 'int64'],
        >>>                                      name='test_reader')
        >>> test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512))
        >>>
        >>> # Create train_main_prog and train_startup_prog
        >>> train_main_prog = fluid.Program()
        >>> train_startup_prog = fluid.Program()
        >>> with fluid.program_guard(train_main_prog, train_startup_prog):
        >>>     # Use fluid.unique_name.guard() to share parameters with test program
        >>>     with fluid.unique_name.guard():
        >>>         train_loss = network(train_reader) # some network definition
        >>>         adam = fluid.optimizer.Adam(learning_rate=0.01)
        >>>         adam.minimize(loss)
        >>>
        >>> # Create test_main_prog and test_startup_prog
        >>> test_main_prog = fluid.Program()
        >>> test_startup_prog = fluid.Program()
        >>> with fluid.program_guard(test_main_prog, test_startup_prog):
        >>>     # Use fluid.unique_name.guard() to share parameters with train program
        >>>     with fluid.unique_name.guard():
        >>>         test_loss = network(test_reader)
        >>>
        >>> fluid.Executor(fluid.CUDAPlace(0)).run(train_startup_prog)
        >>> fluid.Executor(fluid.CUDAPlace(0)).run(test_startup_prog)
        >>>
        >>> train_exe = fluid.ParallelExecutor(use_cuda=True,
        >>>                 loss_name=train_loss.name, main_program=train_main_prog)
        >>> test_exe = fluid.ParallelExecutor(use_cuda=True,
        >>>                 loss_name=test_loss.name, main_program=test_main_prog)
        >>> for epoch_id in range(10):
587
        >>>     train_reader.start()
588 589 590 591 592 593
        >>>     try:
        >>>         while True:
        >>>             train_exe.run(fetch_list=[train_loss.name])
        >>>     except fluid.core.EOFException:
        >>>         train_reader.reset()
        >>>
594
        >>>     test_reader.start()
595 596 597 598 599
        >>>     try:
        >>>         while True:
        >>>             test_exe.run(fetch_list=[test_loss.name])
        >>>     except fluid.core.EOFException:
        >>>         test_reader.reset()
S
sneaxiy 已提交
600
    """
Q
Qiao Longfei 已提交
601 602 603
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []
Y
yuyang18 已提交
604

Q
Qiao Longfei 已提交
605 606 607
    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))
Y
yuyang18 已提交
608

Q
Qiao Longfei 已提交
609 610
    if lod_levels is None:
        lod_levels = [0] * len(shapes)
611

Q
Qiao Longfei 已提交
612 613 614 615 616 617 618 619
    if name is None:
        queue_name = unique_name('lod_tensor_blocking_queue')
        reader_name = unique_name('create_py_reader')
        double_buffer_name = unique_name('double_buffer')
    else:
        queue_name = "_".join([name, "queue"])
        reader_name = "_".join([name, "reader"])
        double_buffer_name = "_".join([name, "double_buffer"])
620

Q
Qiao Longfei 已提交
621 622
    var = global_scope().var(queue_name)
    feed_queue = core.init_lod_tensor_blocking_queue(var, capacity, shapes)
623

Q
Qiao Longfei 已提交
624 625 626 627 628 629 630 631 632 633 634
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=reader_name)
    startup_blk.append_op(
        type='create_py_reader',
        inputs={'blocking_queue': [queue_name]},
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })
635

Q
Qiao Longfei 已提交
636 637
    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
638

Q
Qiao Longfei 已提交
639 640
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)
641

Q
Qiao Longfei 已提交
642 643 644 645 646 647 648
    reader = monkey_patch_reader_methods(main_prog_var)
    if use_double_buffer:
        double_buffer_reader = double_buffer(reader, name=double_buffer_name)
        # we return a double buffer reader. However, the reset method comes from
        # py_reader.
        double_buffer_reader.reset = reader.reset
        reader = double_buffer_reader
649

Q
Qiao Longfei 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
    # monkey patch py_reader special methods
    reader.queue = feed_queue
    current_reset_method = reader.reset
    reader.thread = None
    reader.tensor_provider = None
    reader.exited = False

    def start_provide_thread(func):
        def __provider_thread__():
            for tensors in func():
                array = core.LoDTensorArray()
                for item in tensors:
                    if not isinstance(item, core.LoDTensor):
                        tmp = core.LoDTensor()
                        tmp.set(item, core.CPUPlace())
                        item = tmp

                    array.append(item)

                if reader.exited:
                    break
                feed_queue.push(array)
                if reader.exited:
                    break
            feed_queue.close()

        reader.thread = threading.Thread(target=__provider_thread__)
        reader.thread.daemon = True
        reader.thread.start()

    def __set_tensor_provider__(func):
        reader.tensor_provider = func

    def __set_paddle_reader__(paddle_reader):
        with program_guard(Program(), Program()):
            feed_list = []
            counter = 0
            for dtype, shape, lod_level in zip(dtypes, shapes, lod_levels):
                name = str(counter)
                feed_list.append(
                    data(
                        name=name,
                        dtype=dtype,
                        shape=shape,
                        lod_level=lod_level))
                counter += 1

            feeder = DataFeeder(feed_list=feed_list, place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(
                paddle_reader, multi_devices=False)

        def __tensor_provider__():
            for slots in paddle_reader():
                yield [slots[str(idx)] for idx in six.moves.xrange(counter)]

        __set_tensor_provider__(__tensor_provider__)

    def __reset__():
        current_reset_method()
        if reader.thread is not None and reader.tensor_provider is not None:
            reader.exited = True
            reader.thread.join()
            reader.exited = False

    def __start__():
        start_provide_thread(reader.tensor_provider)

    reader.reset = __reset__
    reader.decorate_tensor_provider = __set_tensor_provider__
    reader.decorate_paddle_reader = __set_paddle_reader__
    reader.start = __start__

    return reader
S
sneaxiy 已提交
723 724


725 726 727 728
def open_files(filenames,
               shapes,
               lod_levels,
               dtypes,
Y
yuyang18 已提交
729
               thread_num=None,
F
fengjiayi 已提交
730 731
               buffer_size=None,
               pass_num=1,
Y
yuyang18 已提交
732
               is_test=None):
F
fengjiayi 已提交
733 734 735
    """
    Open files

736 737 738
    This layer takes a list of files to read from and returns a Reader Variable.
    Via the Reader Variable, we can get data from given files. All files must
    have name suffixs to indicate their formats, e.g., '*.recordio'.
F
fengjiayi 已提交
739 740 741 742 743 744

    Args:
       filenames(list): The list of file names.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       dtypes(list): List of strs which declaring data type.
Y
yuyang18 已提交
745 746 747
       thread_num(None): The number of thread to read files.
            Default: min(len(filenames), cpu_number).
       buffer_size(None): The buffer size of reader. Default: 3 * thread_num
F
fengjiayi 已提交
748
       pass_num(int): Number of passes to run.
Y
yuyang18 已提交
749 750 751 752
       is_test(bool|None): Whether `open_files` used for testing or not. If it
            is used for testing, the order of data generated is same as the file
            order. Otherwise, it is not guaranteed the order of data is same
            between every epoch. [Default: False].
F
fengjiayi 已提交
753 754 755 756 757 758 759

    Returns:
       Variable: A Reader Variable via which we can get file data.

    Examples:
       .. code-block:: python

F
fengjiayi 已提交
760
         reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
F
fengjiayi 已提交
761
                                                     './data2.recordio'],
F
fengjiayi 已提交
762 763
                                             shapes=[(3,224,224), (1)],
                                             lod_levels=[0, 0],
Y
yuyang18 已提交
764
                                             dtypes=['float32', 'int64'])
F
fengjiayi 已提交
765 766

         # Via the reader, we can use 'read_file' layer to get data:
F
fengjiayi 已提交
767
         image, label = fluid.layers.io.read_file(reader)
F
fengjiayi 已提交
768
    """
Y
yuyang18 已提交
769 770 771 772 773 774 775 776 777
    if thread_num is None:
        thread_num = min(len(filenames), multiprocessing.cpu_count())
    else:
        thread_num = int(thread_num)

    if buffer_size is None:
        buffer_size = 3 * thread_num
    else:
        buffer_size = int(buffer_size)
Y
yuyang18 已提交
778

M
minqiyang 已提交
779
    if isinstance(filenames, six.string_types):
F
fengjiayi 已提交
780
        filenames = [filenames]
F
fengjiayi 已提交
781 782 783 784 785 786 787 788
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

F
fengjiayi 已提交
789
    multi_file_reader_name = unique_name('multi_file_reader')
F
fengjiayi 已提交
790
    startup_blk = default_startup_program().current_block()
F
fengjiayi 已提交
791
    startup_reader = startup_blk.create_var(name=multi_file_reader_name)
Y
yuyang18 已提交
792 793 794 795
    attrs = {
        'shape_concat': shape_concat,
        'lod_levels': lod_levels,
        'ranks': ranks,
Y
yuyang18 已提交
796 797 798
        'file_names': filenames,
        'thread_num': thread_num,
        'buffer_size': buffer_size
Y
yuyang18 已提交
799 800 801
    }
    if is_test is not None:
        attrs['is_test'] = is_test
F
fengjiayi 已提交
802
    startup_blk.append_op(
Y
yuyang18 已提交
803
        type='open_files', outputs={'Out': [startup_reader]}, attrs=attrs)
F
fengjiayi 已提交
804

F
fengjiayi 已提交
805 806 807 808 809 810 811
    startup_reader.desc.set_dtypes(dtypes)
    startup_reader.persistable = True
    main_prog_reader = _copy_reader_var_(default_main_program().current_block(),
                                         startup_reader)
    if pass_num > 1:
        main_prog_reader = multi_pass(
            reader=main_prog_reader, pass_num=pass_num)
F
fengjiayi 已提交
812

F
fengjiayi 已提交
813 814 815
    return monkey_patch_reader_methods(main_prog_reader)


J
JiayiFeng 已提交
816
def __create_shared_decorated_reader__(op_type, reader, attrs):
Y
Yu Yang 已提交
817 818 819
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
F
fengjiayi 已提交
820
    startop_op = startup_blk.append_op(
Y
Yu Yang 已提交
821 822 823 824 825
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [startup_var]},
        attrs=attrs)
    startup_var.persistable = True
F
fengjiayi 已提交
826 827 828 829
    main_prog_block = default_main_program().current_block()
    main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
    _copy_reader_create_op_(main_prog_block, startop_op)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
830 831


832 833
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
    new_reader_name = name if name is not None else unique_name(op_type)
834 835 836 837 838 839 840 841 842 843
    main_blk = default_main_program().current_block()
    new_reader = main_blk.create_var(name=new_reader_name)
    main_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [new_reader]},
        attrs=attrs)
    return monkey_patch_reader_methods(new_reader)


F
fengjiayi 已提交
844
def shuffle(reader, buffer_size):
845 846 847
    """
    Shuffle the reader.
    """
848 849
    return __create_unshared_decorated_reader__(
        'create_shuffle_reader', reader, {'buffer_size': int(buffer_size)})
Y
Yu Yang 已提交
850 851


J
JiayiFeng 已提交
852
def batch(reader, batch_size):
F
fengjiayi 已提交
853
    """
854 855 856
    This layer is a reader decorator. It takes a reader and adds
    'batching' decoration on it. When reading with the result
    decorated reader, output data will be automatically organized
F
fengjiayi 已提交
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
    to the form of batches.

    Args:
        reader(Variable): The reader to be decorated with 'batching'.
        batch_size(int): The batch size.

    Returns:
        Variable: The reader which has been decorated with 'batching'.

    Examples:
        .. code-block:: python

            raw_reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
                                                           './data2.recordio'],
                                                    shapes=[(3,224,224), (1)],
                                                    lod_levels=[0, 0],
                                                    dtypes=['float32', 'int64'],
                                                    thread_num=2,
                                                    buffer_size=2)
            batch_reader = fluid.layers.batch(reader=raw_reader, batch_size=5)

            # If we read data with the raw_reader:
            #     data = fluid.layers.read_file(raw_reader)
            # We can only get data instance by instance.
881
            #
F
fengjiayi 已提交
882 883
            # However, if we read data with the batch_reader:
            #     data = fluid.layers.read_file(batch_reader)
884 885
            # Each 5 adjacent instances will be automatically combined together
            # to become a batch. So what we get('data') is a batch data instead
F
fengjiayi 已提交
886 887
            # of an instance.
    """
J
JiayiFeng 已提交
888 889 890 891
    return __create_unshared_decorated_reader__(
        'create_batch_reader', reader, {'batch_size': int(batch_size)})


892
def double_buffer(reader, place=None, name=None):
Y
yuyang18 已提交
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
    """
    Wrap a double buffer reader. The data will copy to target place with a
    double buffer queue. If the target place is None, the place that executor
    perform on will be used.

    Args:
        reader(Variable): the reader variable need to be wrapped.
        place(Place): the place of target data. Default is the sample place of
            executor perform.

        name(str): Variable name. None if the user does not care.

    Returns:
        wrapped reader with double buffer.

    Examples:

        >>> reader = fluid.layers.open_files(filenames=['somefile'],
        >>>                                  shapes=[[-1, 784], [-1, 1]],
        >>>                                  dtypes=['float32', 'int64'])
        >>> reader = fluid.layers.double_buffer(reader)
        >>> img, label = fluid.layers.read_file(reader)
    """
Y
Yu Yang 已提交
916 917 918
    attrs = dict()
    if place is not None:
        attrs['place'] = str(place).upper()
919 920
    return __create_unshared_decorated_reader__(
        'create_double_buffer_reader', reader, attrs, name=name)
Y
Yu Yang 已提交
921 922


F
fengjiayi 已提交
923
def multi_pass(reader, pass_num):
924 925
    return __create_shared_decorated_reader__(
        'create_multi_pass_reader', reader, {'pass_num': int(pass_num)})
F
fengjiayi 已提交
926 927


F
fengjiayi 已提交
928
def read_file(reader):
F
fengjiayi 已提交
929
    """
F
fengjiayi 已提交
930
    Execute the given reader and get data via it.
F
fengjiayi 已提交
931

932 933
    A reader is also a Variable. It can be a raw reader generated by
    `fluid.layers.open_files()` or a decorated one generated by
F
fengjiayi 已提交
934 935 936 937
    `fluid.layers.double_buffer()` and so on.

    Args:

F
fengjiayi 已提交
938
        reader(Variable): The reader to execute.
F
fengjiayi 已提交
939 940

    Returns:
F
fengjiayi 已提交
941
        Tuple[Variable]: Data read via the given reader.
F
fengjiayi 已提交
942 943 944 945 946 947 948 949 950 951 952 953 954

    Examples:
        .. code-block:: python

           data_file = fluid.layers.open_files(
                filenames=['mnist.recordio'],
                shapes=[(-1, 748), (-1, 1)],
                lod_levels=[0, 0],
                dtypes=["float32", "int64"])
            data_file = fluid.layers.double_buffer(
                fluid.layers.batch(data_file, batch_size=64))
            input, label = fluid.layers.read_file(data_file)
    """
Y
Yu Yang 已提交
955 956 957 958
    helper = LayerHelper('read_file')
    out = [
        helper.create_tmp_variable(
            stop_gradient=True, dtype='float32')
F
fengjiayi 已提交
959
        for _ in range(len(reader.desc.shapes()))
Y
Yu Yang 已提交
960 961
    ]
    helper.append_op(
F
fengjiayi 已提交
962
        type='read', inputs={'Reader': [reader]}, outputs={'Out': out})
Y
Yu Yang 已提交
963 964 965 966
    if len(out) == 1:
        return out[0]
    else:
        return out
F
fengjiayi 已提交
967 968 969


class Preprocessor(object):
X
Xin Pan 已提交
970 971 972 973 974 975 976 977 978
    """
    A block for data pre-processing in reader.

    Args:
        reader (Variable): A reader variable.
        name (str, default None): The name of the reader.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
979

X
Xin Pan 已提交
980 981 982 983 984 985 986 987 988 989
            preprocessor = fluid.layers.io.Preprocessor(reader=reader)
            with preprocessor.block():
                img, lbl = preprocessor.inputs()
                img_out = img / 2
                lbl_out = lbl + 1
                preprocessor.outputs(img_out, lbl_out)

            data_file = fluid.layers.io.double_buffer(preprocessor())

    """
F
fengjiayi 已提交
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
    BEFORE_SUB_BLOCK = 0
    IN_SUB_BLOCK = 1
    AFTER_SUB_BLOCK = 2

    def __init__(self, reader, name=None):
        self.underlying_reader = reader
        new_reader_name = name if name is not None else unique_name(
            "create_custom_reader")
        self.main_prog = default_main_program()
        self.reader = self.main_prog.current_block().create_var(
            name=new_reader_name)
        self.sub_block = None
        self.source_var_names = None
        self.sink_var_names = None
        self.status = Preprocessor.BEFORE_SUB_BLOCK

X
Xin Pan 已提交
1006
    def _is_completed(self):
F
fengjiayi 已提交
1007 1008 1009 1010 1011
        return self.sub_block and self.source_var_names and self.sink_var_names

    @contextlib.contextmanager
    def block(self):
        self.status = Preprocessor.IN_SUB_BLOCK
W
Wu Yi 已提交
1012
        self.sub_block = self.main_prog._create_block()
F
fengjiayi 已提交
1013
        yield
W
Wu Yi 已提交
1014
        self.main_prog._rollback()
F
fengjiayi 已提交
1015
        self.status = Preprocessor.AFTER_SUB_BLOCK
X
Xin Pan 已提交
1016
        if not self._is_completed():
F
fengjiayi 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
            raise RuntimeError(
                "The definition of preprocessor is incompleted! "
                "Please make sure that you have set input and output "
                "variables by invoking 'inputs' and 'outputs' in "
                "Preprocessor's sub-block.")

    def inputs(self):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.inputs() can only be invoked inside the sub-block."
            )

        source_shapes = self.underlying_reader.desc.shapes()
        source_dtypes = self.underlying_reader.desc.dtypes()
        source_lod_levels = self.underlying_reader.desc.lod_levels()
F
fengjiayi 已提交
1032 1033
        self.source_var_names = [
            unique_name("preprocessor_source")
M
minqiyang 已提交
1034
            for _ in six.moves.range(len(source_shapes))
F
fengjiayi 已提交
1035
        ]
F
fengjiayi 已提交
1036
        source_vars = []
F
fengjiayi 已提交
1037 1038 1039
        for var_name, shape, dtype, lod_level in zip(
                self.source_var_names, source_shapes, source_dtypes,
                source_lod_levels):
F
fengjiayi 已提交
1040
            source_vars.append(self.main_prog.current_block().create_var(
F
fengjiayi 已提交
1041
                name=var_name, shape=shape, dtype=dtype, lod_level=lod_level))
F
fengjiayi 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
        return source_vars

    def outputs(self, *outs):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.outputs() can only be invoked inside the sub-block."
            )
        self.sink_var_names = [var.name for var in outs]

    def __call__(self, *args, **kwargs):
        if self.status != Preprocessor.AFTER_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor output can only be retrieved after rnn block.")

        self.main_prog.current_block().append_op(
            type="create_custom_reader",
            inputs={'UnderlyingReader': self.underlying_reader},
            outputs={'Out': [self.reader]},
            attrs={
                "sub_block": self.sub_block,
                "source_var_names": self.source_var_names,
                "sink_var_names": self.sink_var_names
            })
        return monkey_patch_reader_methods(self.reader)
Y
yuyang18 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091


@templatedoc()
def load(out, file_path, load_as_fp16=None):
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> tmp_tensor = fluid.layers.create_tensor(dtype='float32')
    >>> fluid.layers.load(tmp_tensor, "./tmp_tensor.bin")

    Args:
        out(${out_type}): ${out_comment}.

        file_path(${file_path_type}): ${file_path_comment}.

        load_as_fp16(${load_as_fp16_type}): ${load_as_fp16_comment}.

    Returns:
        None
    """
    helper = LayerHelper("load", **locals())
    attrs = {"file_path": file_path}
    if load_as_fp16 is not None:
        attrs['load_as_fp16'] = load_as_fp16
    helper.append_op(type="load", inputs={}, output={"Out": out}, args=attrs)