io.py 14.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from .. import core
Y
Yu Yang 已提交
16 17
from ..framework import convert_np_dtype_to_dtype_, default_main_program, default_startup_program
from ..unique_name import generate as unique_name
T
WIP  
typhoonzero 已提交
18 19
from control_flow import BlockGuard
from ..layer_helper import LayerHelper
Y
Refine  
Yu Yang 已提交
20
from ..executor import global_scope
Y
Yu Yang 已提交
21

Y
Yu Yang 已提交
22 23
__all__ = [
    'data', 'BlockGuardServ', 'ListenAndServ', 'Send', 'open_recordio_file',
F
fengjiayi 已提交
24
    'open_files', 'read_file', 'create_shuffle_reader',
25
    'create_double_buffer_reader', 'create_multi_pass_reader'
Y
Yu Yang 已提交
26
]
Y
Yu Yang 已提交
27 28 29 30 31 32 33 34 35 36


def data(name,
         shape,
         append_batch_size=True,
         dtype='float32',
         lod_level=0,
         type=core.VarDesc.VarType.LOD_TENSOR,
         stop_gradient=True):
    """
K
kavyasrinet 已提交
37
    **Data Layer**
Y
Yu Yang 已提交
38

K
kavyasrinet 已提交
39
    This function takes in the input and based on whether data has
C
caoying03 已提交
40
    to be returned back as a minibatch, it creates the global variable by using
Y
Yu Yang 已提交
41
    the helper functions. The global variables can be accessed by all the
C
caoying03 已提交
42
    following operators in the graph.
Y
Yu Yang 已提交
43 44 45 46

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

K
kavyasrinet 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    Args:
       name(str): The name/alias of the function
       shape(list): Tuple declaring the shape.
       append_batch_size(bool): Whether or not to append the data as a batch.
       dtype(int|float): The type of data : float32, float_16, int etc
       type(VarType): The output type. By default it is LOD_TENSOR.
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
       main_program(Program): Name of the main program that calls this
       startup_program(Program): Name of the startup program
       stop_gradient(bool): A boolean that mentions whether gradient should flow.

    Returns:
        Variable: The global variable that gives access to the data.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
    for i in xrange(len(shape)):
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

    return helper.create_global_variable(
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
        lod_level=lod_level)
T
typhoonzero 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
    ListenAndServ class.

    ListenAndServ class is used to wrap listen_and_serv op to create a server
    which can receive variables from clients and run a block.
    """

Y
Yancey1989 已提交
116
    def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
117
        self.helper = LayerHelper("listen_and_serv")
Y
Yancey1989 已提交
118
        self.inputs = inputs
T
typhoonzero 已提交
119 120 121
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
122 123
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
124
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
138 139 140 141 142 143 144 145
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
146 147
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
148 149 150

        return params, grads

T
typhoonzero 已提交
151 152 153 154 155 156 157
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
158 159 160 161 162 163
    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        parent_block.append_op(
164
            type='listen_and_serv',
Y
Yancey1989 已提交
165
            inputs={"X": self.inputs},
T
typhoonzero 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
                'OptimizeBlock': current_block
            })


def Send(endpoints, send_vars, get_vars):
    """
    Send layer

    Args:
        endpoints: comma seperated IP:PORT pairs in the order
                   of send_vars to send
        send_vars: vars to send
        get_vars: vars to get from server after send completes.

    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
    """
    assert (type(send_vars) == list)
    assert (type(get_vars) == list)

    epmap = endpoints.split(",")
T
typhoonzero 已提交
191
    endpoints = list(set(epmap))
T
typhoonzero 已提交
192 193

    helper = LayerHelper("Send", **locals())
Y
Yancey1989 已提交
194 195 196
    rpc_client_var = default_main_program().global_block().create_var(
        name="RPC_CLIENT_VAR", persistable=True, type=core.VarDesc.VarType.RAW)

T
typhoonzero 已提交
197 198 199
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
Y
Yancey1989 已提交
200 201
        outputs={"Out": get_vars,
                 "RPCClient": rpc_client_var},
T
typhoonzero 已提交
202 203
        attrs={"endpoints": endpoints,
               "epmap": epmap})
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231


def Recv(endpoints, get_vars):
    """
    Recv layer

    Args:
        endpoints: comma seperated IP:PORT pairs in the order
                   of send_vars to send
        send_vars: vars to send
        get_vars: vars to get from server after send completes.

    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
    """
    assert (type(send_vars) == list)
    assert (type(get_vars) == list)

    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
    helper.append_op(
        type="recv",
        inputs={"X": get_vars},
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints,
               "epmap": epmap})
Y
Yu Yang 已提交
232 233


Y
Refine  
Yu Yang 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247
def monkey_patch_reader_methods(reader):
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def eof():
        return not __get_reader__().has_next()

    def reset():
        return __get_reader__().reset()

    reader.eof = eof
    reader.reset = reset
Y
Yu Yang 已提交
248 249
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
250 251 252
    return reader


Y
Yu Yang 已提交
253 254 255 256 257
def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
    new_var.persistable = True
F
fengjiayi 已提交
258 259 260 261
    return new_var


def _copy_reader_create_op_(block, op):
F
fengjiayi 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    input_param_names = op.input_names
    new_input_map = {}
    for param_name in input_param_names:
        new_input_map[param_name] = []
        arg_names = op.input(param_name)
        for arg_name in arg_names:
            new_input_map[param_name].append(block.var(arg_name))

    output_param_names = op.output_names
    new_output_map = {}
    for param_name in output_param_names:
        new_output_map[param_name] = []
        arg_names = op.output(param_name)
        for arg_name in arg_names:
            new_output_map[param_name].append(block.var(arg_name))

F
fengjiayi 已提交
278
    new_op = block.append_op(
F
fengjiayi 已提交
279 280 281
        type=op.type,
        inputs=new_input_map,
        outputs=new_output_map,
J
JiayiFeng 已提交
282
        attrs=op.all_attrs())
F
fengjiayi 已提交
283
    return new_op
Y
Yu Yang 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310


def open_recordio_file(filename, shapes, lod_levels, dtypes):
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('open_recordio_file')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_recordio_file_reader',
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'filename': filename,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
F
fengjiayi 已提交
311 312 313
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
314 315


316 317 318 319 320 321
def open_files(filenames,
               shapes,
               lod_levels,
               dtypes,
               thread_num,
               buffer_size=None):
F
fengjiayi 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
    """
    Open files

    This layer takes a list of files to read from and returns a Reader Variable. Via the Reader Variable, we can get data from given files.

    Args:
       filenames(list): The list of file names.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       dtypes(list): List of strs which declaring data type.
       thread_num(int): The maximal concurrent prefetch thread number.
       buffer_size(int): The size of prefetch buffer.

    Returns:
       Variable: A Reader Variable via which we can get file data.

    Examples:
       .. code-block:: python

         reader = fluid.layers.open_files(filenames=['./data1.recordio',
                                                     './data2.recordio'],
                                          shapes=[(3,224,224), (1)],
                                          lod_levels=[0, 0],
                                          dtypes=['float32', 'int64'],
                                          thread_num=2,
                                          buffer_size=2)

         # Via the reader, we can use 'read_file' layer to get data:
         image, label = fluid.layers.read_file(reader)
    """
352 353
    if buffer_size is None:
        buffer_size = thread_num
F
fengjiayi 已提交
354 355
    if isinstance(filenames, basestring):
        filenames = [filenames]
F
fengjiayi 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('multiple_reader')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='open_files',
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks,
F
fengjiayi 已提交
375
            'file_names': filenames,
376 377
            'thread_num': thread_num,
            'buffer_size': buffer_size
F
fengjiayi 已提交
378 379 380 381
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
F
fengjiayi 已提交
382 383 384
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)
    return monkey_patch_reader_methods(main_prog_var)
F
fengjiayi 已提交
385 386


Y
Yu Yang 已提交
387 388 389 390
def __create_decorated_reader__(op_type, reader, attrs):
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
F
fengjiayi 已提交
391
    startop_op = startup_blk.append_op(
Y
Yu Yang 已提交
392 393 394 395 396
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [startup_var]},
        attrs=attrs)
    startup_var.persistable = True
F
fengjiayi 已提交
397 398 399 400
    main_prog_block = default_main_program().current_block()
    main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
    _copy_reader_create_op_(main_prog_block, startop_op)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
401 402 403 404 405 406 407


def create_shuffle_reader(reader, buffer_size):
    return __create_decorated_reader__('create_shuffle_reader', reader,
                                       {'buffer_size': int(buffer_size)})


Y
Yu Yang 已提交
408 409 410 411 412 413 414 415
def create_double_buffer_reader(reader, place=None):
    attrs = dict()
    if place is not None:
        attrs['place'] = str(place).upper()
    return __create_decorated_reader__('create_double_buffer_reader', reader,
                                       attrs)


F
fengjiayi 已提交
416 417 418 419 420
def create_multi_pass_reader(reader, pass_num):
    return __create_decorated_reader__('create_multi_pass_reader', reader,
                                       {'pass_num': int(pass_num)})


Y
Yu Yang 已提交
421 422 423 424 425
def read_file(file_obj):
    helper = LayerHelper('read_file')
    out = [
        helper.create_tmp_variable(
            stop_gradient=True, dtype='float32')
Y
Yu Yang 已提交
426
        for _ in range(len(file_obj.desc.shapes()))
Y
Yu Yang 已提交
427 428 429 430 431 432 433
    ]
    helper.append_op(
        type='read', inputs={'Reader': [file_obj]}, outputs={'Out': out})
    if len(out) == 1:
        return out[0]
    else:
        return out