dataset.py 55.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This is definition of dataset class, which is high performance IO."""

import paddle
from paddle.fluid.proto import data_feed_pb2
from google.protobuf import text_format
import paddle.fluid.core as core

21 22
__all__ = []

23 24 25 26 27 28 29 30 31 32 33 34 35

class DatasetBase(object):
    """ Base dataset class. """

    def __init__(self):
        """ Init. """
        # define class name here
        # to decide whether we need create in memory instance
        self.proto_desc = data_feed_pb2.DataFeedDesc()
        self.proto_desc.pipe_command = "cat"
        self.dataset = core.Dataset("MultiSlotDataset")
        self.thread_num = 1
        self.filelist = []
36
        self.use_ps_gpu = False
37
        self.psgpu = None
38

39 40 41 42 43 44 45 46 47
    def init(self,
             batch_size=1,
             thread_num=1,
             use_var=[],
             pipe_command="cat",
             input_type=0,
             fs_name="",
             fs_ugi="",
             download_cmd="cat"):
48
        """
49 50
        should be called only once in user's python scripts to initialize setings of dataset instance. 
        Normally, it is called by InMemoryDataset or QueueDataset.
51 52

        Args:
53 54 55 56 57 58 59 60
            batch_size(int): batch size. It will be effective during training. default is 1.
            thread_num(int): thread num, it is the num of readers. default is 1.
            use_var(list): list of variables. Variables which you will use. default is [].
            pipe_command(str): pipe command of current dataset. A pipe command is a UNIX pipeline command that can be used only. default is "cat"
            input_type(int): the input type of generated input. 0 is for one sample, 1 is for one batch. defalut is 0.
            fs_name(str): fs name. default is "".
            fs_ugi(str): fs ugi. default is "".
            download_cmd(str): customized download command. default is "cat"
61 62 63


        """
64 65 66 67 68 69 70
        self._set_batch_size(batch_size)
        self._set_thread(thread_num)
        self._set_use_var(use_var)
        self._set_pipe_command(pipe_command)
        self._set_input_type(input_type)
        self._set_hdfs_config(fs_name, fs_ugi)
        self._set_download_cmd(download_cmd)
71

72
    def _set_pipe_command(self, pipe_command):
73
        """
74 75
        Set pipe command of current dataset
        A pipe command is a UNIX pipeline command that can be used only
76 77 78 79

        Examples:
            .. code-block:: python

80 81 82
              import paddle
              dataset = paddle.distributed.fleet.dataset.DatasetBase()
              dataset._set_pipe_command("python my_script.py")
83 84

        Args:
85
            pipe_command(str): pipe command
86 87

        """
88
        self.proto_desc.pipe_command = pipe_command
89

90
    def _set_batch_size(self, batch_size):
91 92 93 94 95 96
        """
        Set batch size. Will be effective during training

        Examples:
            .. code-block:: python

97 98 99
              import paddle
              dataset = paddle.distributed.fleet.DatasetBase()
              dataset._set_batch_size(128)
100 101 102 103 104 105 106

        Args:
            batch_size(int): batch size

        """
        self.proto_desc.batch_size = batch_size

107
    def _set_thread(self, thread_num):
108 109 110 111 112 113
        """
        Set thread num, it is the num of readers.

        Examples:
            .. code-block:: python

114 115 116
              import paddle
              dataset = paddle.distributed.fleet.DatasetBase()
              dataset._set_thread(12)
117 118 119 120 121 122 123 124 125

        Args:
            thread_num(int): thread num
        """
        self.dataset.set_thread_num(thread_num)
        self.thread_num = thread_num

    def set_filelist(self, filelist):
        """
126
        Set file list in current worker. The filelist is indicated by a list of file names (string).
127 128 129 130

        Examples:
            .. code-block:: python

131 132
              import paddle
              dataset = paddle.distributed.fleet.DatasetBase()
133 134 135
              dataset.set_filelist(['a.txt', 'b.txt'])

        Args:
136
            filelist(list[str]): list of file names of inputs.
137 138 139 140
        """
        self.dataset.set_filelist(filelist)
        self.filelist = filelist

141
    def _set_input_type(self, input_type):
142 143
        self.proto_desc.input_type = input_type

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    def _set_uid_slot(self, uid_slot):
        """
        Set user slot name.

        Examples:
            .. code-block:: python

              import paddle
              dataset = paddle.distributed.fleet.DatasetBase()
              dataset._set_uid_slot('6048')

        Args:
            set_uid_slot(string): user slot name
        """
        multi_slot = self.proto_desc.multi_slot_desc
        multi_slot.uid_slot = uid_slot

161
    def _set_use_var(self, var_list):
162 163 164 165 166 167
        """
        Set Variables which you will use.

        Examples:
            .. code-block:: python

168 169 170
              import paddle
              dataset = paddle.distributed.fleet.DatasetBase()
              dataset._set_use_var([data, label])
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

        Args:
            var_list(list): variable list
        """
        multi_slot = self.proto_desc.multi_slot_desc
        for var in var_list:
            slot_var = multi_slot.slots.add()
            slot_var.is_used = True
            slot_var.name = var.name
            if var.lod_level == 0:
                slot_var.is_dense = True
                slot_var.shape.extend(var.shape)
            if var.dtype == core.VarDesc.VarType.FP32:
                slot_var.type = "float"
            elif var.dtype == core.VarDesc.VarType.INT64:
                slot_var.type = "uint64"
            else:
                raise ValueError(
189
                    "Currently, paddle.distributed.fleet.dataset only supports dtype=float32 and dtype=int64"
190 191
                )

192
    def _set_hdfs_config(self, fs_name, fs_ugi):
193 194 195 196 197 198
        """
        Set hdfs config: fs name ad ugi

        Examples:
            .. code-block:: python

199 200 201
              import paddle
              dataset = paddle.distributed.fleet.DatasetBase()
              dataset._set_hdfs_config("my_fs_name", "my_fs_ugi")
202 203 204 205 206 207 208

        Args:
            fs_name(str): fs name
            fs_ugi(str): fs ugi
        """
        self.dataset.set_hdfs_config(fs_name, fs_ugi)

209
    def _set_download_cmd(self, download_cmd):
210 211 212 213 214 215
        """
        Set customized download cmd: download_cmd

        Examples:
            .. code-block:: python

216 217 218
              import paddle
              dataset = paddle.distributed.fleet.DatasetBase()
              dataset._set_download_cmd("./read_from_afs")
219 220 221 222 223 224 225 226 227 228 229 230 231 232

        Args:
            download_cmd(str): customized download command
        """
        self.dataset.set_download_cmd(download_cmd)

    def _prepare_to_run(self):
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        self.dataset.set_thread_num(self.thread_num)
233
        self.dataset.set_data_feed_desc(self._desc())
234 235
        self.dataset.create_readers()

236 237 238 239 240 241 242 243
    def _set_use_ps_gpu(self, use_ps_gpu):
        """
        set use_ps_gpu flag

        Args:
            use_ps_gpu: bool
        """
        self.use_ps_gpu = use_ps_gpu
244 245 246 247 248
        # if not defined heterps with paddle, users will not use psgpu
        if not core._is_compiled_with_heterps():
            self.use_ps_gpu = 0
        elif self.use_ps_gpu:
            self.psgpu = core.PSGPU()
249

250 251 252
    def _finish_to_run(self):
        self.dataset.destroy_readers()

253
    def _desc(self):
254 255 256 257 258 259
        """
        Returns a protobuf message for this DataFeedDesc

        Examples:
            .. code-block:: python

260 261 262
              import paddle
              dataset = paddle.distributed.fleet.DatasetBase()
              print(dataset._desc())
263 264 265 266 267 268 269 270 271 272 273 274

        Returns:
            A string message
        """
        return text_format.MessageToString(self.proto_desc)

    def _dynamic_adjust_before_train(self, thread_num):
        pass

    def _dynamic_adjust_after_train(self):
        pass

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
    def _check_use_var_with_data_generator(self, var_list, data_generator_class,
                                           test_file):
        """
         Var consistency insepection of use_var_list and data_generator data.

        Examples:
            .. code-block:: python

              # required: skiptest
              import paddle
              from dataset_generator import CTRDataset
              dataset = paddle.distributed.fleet.DatasetBase()
              generator_class = CTRDataset()
              dataset._check_use_var_with_data_generator([data, label], generator_class, "data/part-00000")

        Args:
            var_list(list): variable list
            data_generator_class(class): data_generator class
            test_file(str): local test file path
        """

        f = open(test_file, "r")
        var_len = len(var_list)

        while True:
            line = f.readline()
            if line:
                line_iter = data_generator_class.generate_sample(line)
                for user_parsed_line in line_iter():
                    data_gen_len = len(user_parsed_line)
                    if var_len != data_gen_len:
                        raise ValueError(
                            "var length mismatch error: var_list = %s vs data_generator = %s"
                            % (var_len, data_gen_len))

                    for i, ele in enumerate(user_parsed_line):
                        if len(ele[1]) == 0:
                            raise ValueError(
                                "var length error: var %s's length in data_generator is 0"
                                % ele[0])

                        if var_list[
                                i].dtype == core.VarDesc.VarType.FP32 and not all(
                                    isinstance(ele, float) for ele in ele[1]):
                            raise TypeError(
                                "var dtype mismatch error: var name = %s, var type in var_list = %s, while var in data_generator contains non-float value, which is %s \n"
                                "Please check if order of var_list and data_generator are aligned. \n"
                                "Please check if var's type in data_generator is correct."
                                % (ele[0], "float", ele[1]))

325 326 327 328
                        if (var_list[i].dtype == core.VarDesc.VarType.INT64
                                or var_list[i].dtype
                                == core.VarDesc.VarType.INT32) and not all(
                                    isinstance(ele, int) for ele in ele[1]):
329 330 331 332 333 334 335 336 337 338 339
                            raise TypeError(
                                "var dtype mismatch error: var name = %s, var type in var_list = %s, while var in data_generator contains non-int value, which is %s \n"
                                "Please check if order of var_list and data_generator are aligned. \n"
                                "Please check if var's type in data_generator is correct."
                                % (ele[0], "int", ele[1]))

            else:
                break

        f.close()

340 341 342

class InMemoryDataset(DatasetBase):
    """
343
    :api_attr: Static Graph
S
ShenLiang 已提交
344 345
    
    It will load data into memory and shuffle data before training.
346

S
ShenLiang 已提交
347 348 349 350 351 352
    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
            dataset = paddle.distributed.InMemoryDataset()
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370

    """

    def __init__(self):
        """ Init. """
        super(InMemoryDataset, self).__init__()
        self.proto_desc.name = "MultiSlotInMemoryDataFeed"
        self.fleet_send_batch_size = None
        self.is_user_set_queue_num = False
        self.queue_num = None
        self.parse_ins_id = False
        self.parse_content = False
        self.parse_logkey = False
        self.merge_by_sid = True
        self.enable_pv_merge = False
        self.merge_by_lineid = False
        self.fleet_send_sleep_seconds = None

371 372
    def _init_distributed_settings(self, **kwargs):
        """
373 374
        :api_attr: Static Graph

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
        should be called only once in user's python scripts to initialize distributed-related setings of dataset instance
        Args:
            kwargs: Keyword arguments. Currently, we support following keys in **kwargs:

            merge_size(int): ins size to merge, if merge_size > 0, set merge by line id, 
                             instances of same line id will be merged after shuffle, 
                             you should parse line id in data generator. default is -1.
            parse_ins_id(bool): Set if Dataset need to parse ins_id. default is False.
            parse_content(bool): Set if Dataset need to parse content. default is False.
            fleet_send_batch_size(int): Set fleet send batch size in one rpc, default is 1024
            fleet_send_sleep_seconds(int): Set fleet send sleep time, default is 0
            fea_eval(bool): Set if Dataset need to do feature importance evaluation using slots shuffle.
                            default is False.
            candidate_size(int): if fea_eval is set True, set the candidate size used in slots shuffle.

        Examples:
            .. code-block:: python

              import paddle
S
ShenLiang 已提交
394
              paddle.enable_static()
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
              dataset = paddle.distributed.InMemoryDataset()
              dataset.init(
                    batch_size=1,
                    thread_num=2,
                    input_type=1,
                    pipe_command="cat",
                    use_var=[])
              dataset._init_distributed_settings(
                    parse_ins_id=True,
                    parse_content=True,
                    fea_eval=True,
                    candidate_size=10000)
              
        """
        merge_size = kwargs.get("merge_size", -1)
        if merge_size > 0:
            self._set_merge_by_lineid(merge_size)

        parse_ins_id = kwargs.get("parse_ins_id", False)
        self._set_parse_ins_id(parse_ins_id)

        parse_content = kwargs.get("parse_content", False)
        self._set_parse_content(parse_content)

        fleet_send_batch_size = kwargs.get("fleet_send_batch_size", None)
        if fleet_send_batch_size:
            self._set_fleet_send_batch_size(fleet_send_batch_size)

        fleet_send_sleep_seconds = kwargs.get("fleet_send_sleep_seconds", None)
        if fleet_send_sleep_seconds:
            self._set_fleet_send_sleep_seconds(fleet_send_sleep_seconds)

        fea_eval = kwargs.get("fea_eval", False)
        if fea_eval:
            candidate_size = kwargs.get("candidate_size", 10000)
            self._set_fea_eval(candidate_size, True)

    def update_settings(self, **kwargs):
        """
434 435
        :api_attr: Static Graph

S
ShenLiang 已提交
436 437
        should be called in user's python scripts to update setings of dataset instance.

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
        Args:
            kwargs: Keyword arguments. Currently, we support following keys in **kwargs,
                    including single node settings and advanced distributed related settings:
            batch_size(int): batch size. It will be effective during training. default is 1.
            thread_num(int): thread num, it is the num of readers. default is 1.
            use_var(list): list of variables. Variables which you will use. default is [].
            input_type(int): the input type of generated input. 0 is for one sample, 1 is for one batch. defalut is 0.
            fs_name(str): fs name. default is "".
            fs_ugi(str): fs ugi. default is "".
            pipe_command(str): pipe command of current dataset. A pipe command is a UNIX pipeline command that can be used only. default is "cat"
            download_cmd(str): customized download command. default is "cat"
            data_feed_type(str): data feed type used in c++ code. default is "MultiSlotInMemoryDataFeed".
            queue_num(int): Dataset output queue num, training threads get data from queues. default is-1, which is set same as thread number in c++.

            merge_size(int): ins size to merge, if merge_size > 0, set merge by line id, 
                             instances of same line id will be merged after shuffle, 
                             you should parse line id in data generator. default is -1.
            parse_ins_id(bool): Set if Dataset need to parse ins_id. default is False.
            parse_content(bool): Set if Dataset need to parse content. default is False.
            fleet_send_batch_size(int): Set fleet send batch size in one rpc, default is 1024
            fleet_send_sleep_seconds(int): Set fleet send sleep time, default is 0
            fea_eval(bool): Set if Dataset need to do feature importance evaluation using slots shuffle.
                            default is False.
            candidate_size(int): if fea_eval is set True, set the candidate size used in slots shuffle.

        Examples:
            .. code-block:: python

S
ShenLiang 已提交
466 467 468 469 470
                import paddle    
                paddle.enable_static()

                dataset = paddle.distributed.InMemoryDataset()
                dataset.init(
471 472 473 474 475
                    batch_size=1,
                    thread_num=2,
                    input_type=1,
                    pipe_command="cat",
                    use_var=[])
S
ShenLiang 已提交
476
                dataset._init_distributed_settings(
477 478 479 480
                    parse_ins_id=True,
                    parse_content=True,
                    fea_eval=True,
                    candidate_size=10000)
S
ShenLiang 已提交
481
                dataset.update_settings(batch_size=2)
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
            
        """
        for key in kwargs:
            if key == "pipe_command":
                self._set_pipe_command(kwargs[key])
            elif key == "batch_size":
                self._set_batch_size(kwargs[key])
            elif key == "thread_num":
                self._set_thread(kwargs[key])
            elif key == "use_var":
                self._set_use_var(kwargs[key])
            elif key == "input_type":
                self._set_input_type(kwargs[key])
            elif key == "fs_name" and "fs_ugi" in kwargs:
                self._set_hdfs_config(kwargs[key], kwargs["fs_ugi"])
            elif key == "download_cmd":
                self._set_download_cmd(kwargs[key])
            elif key == "merge_size" and kwargs.get("merge_size", -1) > 0:
                self._set_merge_by_lineid(kwargs[key])
            elif key == "parse_ins_id":
                self._set_parse_ins_id(kwargs[key])
            elif key == "parse_content":
                self._set_parse_content(kwargs[key])
            elif key == "fleet_send_batch_size":
                self._set_fleet_send_batch_size(kwargs[key])
            elif key == "fleet_send_sleep_seconds":
                self._set_fleet_send_sleep_seconds(kwargs[key])
            elif key == "fea_eval" and kwargs[key] == True:
                candidate_size = kwargs.get("candidate_size", 10000)
                self._set_fea_eval(candidate_size, True)

    def init(self, **kwargs):
        """
515 516
        :api_attr: Static Graph

517
        should be called only once in user's python scripts to initialize setings of dataset instance
S
ShenLiang 已提交
518
        
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
        Args:
            kwargs: Keyword arguments. Currently, we support following keys in **kwargs:
            
            batch_size(int): batch size. It will be effective during training. default is 1.
            thread_num(int): thread num, it is the num of readers. default is 1.
            use_var(list): list of variables. Variables which you will use. default is [].
            input_type(int): the input type of generated input. 0 is for one sample, 1 is for one batch. defalut is 0.
            fs_name(str): fs name. default is "".
            fs_ugi(str): fs ugi. default is "".
            pipe_command(str): pipe command of current dataset. A pipe command is a UNIX pipeline command that can be used only. default is "cat"
            download_cmd(str): customized download command. default is "cat"
            data_feed_type(str): data feed type used in c++ code. default is "MultiSlotInMemoryDataFeed".
            queue_num(int): Dataset output queue num, training threads get data from queues. default is -1, which is set same as thread number in c++.

        Examples:
            .. code-block:: python

                import paddle
S
ShenLiang 已提交
537 538 539
                import os
                paddle.enable_static()

540
                with open("test_queue_dataset_run_a.txt", "w") as f:
S
ShenLiang 已提交
541
                    data = "2 1 2 2 5 4 2 2 7 2 1 3"
542 543
                    f.write(data)
                with open("test_queue_dataset_run_b.txt", "w") as f:
S
ShenLiang 已提交
544
                    data = "2 1 2 2 5 4 2 2 7 2 1 3"
545 546 547 548 549
                    f.write(data)

                slots = ["slot1", "slot2", "slot3", "slot4"]
                slots_vars = []
                for slot in slots:
S
ShenLiang 已提交
550
                    var = paddle.static.data(
551 552 553 554 555 556 557 558 559 560 561 562 563
                        name=slot, shape=[None, 1], dtype="int64", lod_level=1)
                    slots_vars.append(var)

                dataset = paddle.distributed.InMemoryDataset()
                dataset.init(
                    batch_size=1,
                    thread_num=2,
                    input_type=1,
                    pipe_command="cat",
                    use_var=slots_vars)
                dataset.set_filelist(
                    ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"])
                dataset.load_into_memory()
564
                
S
ShenLiang 已提交
565
                place = paddle.CPUPlace()
566 567 568 569 570 571 572
                exe = paddle.static.Executor(place)
                startup_program = paddle.static.Program()
                main_program = paddle.static.Program()
                exe.run(startup_program)

                exe.train_from_dataset(main_program, dataset)
                
573 574
                os.remove("./test_queue_dataset_run_a.txt")
                os.remove("./test_queue_dataset_run_b.txt")
S
ShenLiang 已提交
575

576 577 578 579 580 581 582 583 584 585
        """
        batch_size = kwargs.get("batch_size", 1)
        thread_num = kwargs.get("thread_num", 1)
        use_var = kwargs.get("use_var", [])
        input_type = kwargs.get("input_type", 0)
        fs_name = kwargs.get("fs_name", "")
        fs_ugi = kwargs.get("fs_ugi", "")
        pipe_command = kwargs.get("pipe_command", "cat")
        download_cmd = kwargs.get("download_cmd", "cat")

586 587 588 589 590 591 592 593
        super(InMemoryDataset, self).init(batch_size=batch_size,
                                          thread_num=thread_num,
                                          use_var=use_var,
                                          pipe_command=pipe_command,
                                          input_type=input_type,
                                          fs_name=fs_name,
                                          fs_ugi=fs_ugi,
                                          download_cmd=download_cmd)
594 595 596 597 598 599 600 601 602 603

        data_feed_type = kwargs.get("data_feed_type",
                                    "MultiSlotInMemoryDataFeed")
        self._set_feed_type(data_feed_type)

        if kwargs.get("queue_num", -1) > 0:
            queue_num = kwargs.get("queue_num", -1)
            self._set_queue_num(queue_num)

    def _set_feed_type(self, data_feed_type):
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
        """
        Set data_feed_desc
        """
        self.proto_desc.name = data_feed_type

    def _prepare_to_run(self):
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
        if self.thread_num <= 0:
            self.thread_num = 1
        self.dataset.set_thread_num(self.thread_num)
        if self.queue_num is None:
            self.queue_num = self.thread_num
        self.dataset.set_queue_num(self.queue_num)
        self.dataset.set_parse_ins_id(self.parse_ins_id)
        self.dataset.set_parse_content(self.parse_content)
        self.dataset.set_parse_logkey(self.parse_logkey)
        self.dataset.set_merge_by_sid(self.merge_by_sid)
        self.dataset.set_enable_pv_merge(self.enable_pv_merge)
625
        self.dataset.set_data_feed_desc(self._desc())
626 627 628 629 630
        self.dataset.create_channel()
        self.dataset.create_readers()

    def _dynamic_adjust_before_train(self, thread_num):
        if not self.is_user_set_queue_num:
631 632 633 634
            if self.use_ps_gpu:
                self.dataset.dynamic_adjust_channel_num(thread_num, True)
            else:
                self.dataset.dynamic_adjust_channel_num(thread_num, False)
635 636 637 638
        self.dataset.dynamic_adjust_readers_num(thread_num)

    def _dynamic_adjust_after_train(self):
        if not self.is_user_set_queue_num:
639 640 641 642
            if self.use_ps_gpu:
                self.dataset.dynamic_adjust_channel_num(self.thread_num, True)
            else:
                self.dataset.dynamic_adjust_channel_num(self.thread_num, False)
643 644
        self.dataset.dynamic_adjust_readers_num(self.thread_num)

645
    def _set_queue_num(self, queue_num):
646 647 648 649 650 651 652 653 654
        """
        Set Dataset output queue num, training threads get data from queues

        Args:
            queue_num(int): dataset output queue num

        Examples:
            .. code-block:: python

655
              import paddle
S
ShenLiang 已提交
656
              paddle.enable_static()
657 658
              dataset = paddle.distributed.InMemoryDataset()
              dataset._set_queue_num(12)
659 660 661 662 663

        """
        self.is_user_set_queue_num = True
        self.queue_num = queue_num

664
    def _set_parse_ins_id(self, parse_ins_id):
665
        """
666
        Set if Dataset need to parse insid
667 668 669 670 671 672 673

        Args:
            parse_ins_id(bool): if parse ins_id or not

        Examples:
            .. code-block:: python

674
              import paddle
S
ShenLiang 已提交
675
              paddle.enable_static()
676 677
              dataset = paddle.distributed.InMemoryDataset()
              dataset._set_parse_ins_id(True)
678 679 680 681

        """
        self.parse_ins_id = parse_ins_id

682
    def _set_parse_content(self, parse_content):
683 684 685 686 687 688 689 690 691
        """
        Set if Dataset need to parse content

        Args:
            parse_content(bool): if parse content or not

        Examples:
            .. code-block:: python

692
              import paddle
S
ShenLiang 已提交
693
              paddle.enable_static()
694 695
              dataset = paddle.distributed.InMemoryDataset()
              dataset._set_parse_content(True)
696 697 698 699

        """
        self.parse_content = parse_content

700
    def _set_fleet_send_batch_size(self, fleet_send_batch_size=1024):
701 702 703 704 705 706 707 708 709
        """
        Set fleet send batch size, default is 1024

        Args:
            fleet_send_batch_size(int): fleet send batch size

        Examples:
            .. code-block:: python

710
              import paddle
S
ShenLiang 已提交
711
              paddle.enable_static()
712 713
              dataset = paddle.distributed.InMemoryDataset()
              dataset._set_fleet_send_batch_size(800)
714 715 716 717

        """
        self.fleet_send_batch_size = fleet_send_batch_size

718
    def _set_fleet_send_sleep_seconds(self, fleet_send_sleep_seconds=0):
719 720 721 722 723 724 725 726 727
        """
        Set fleet send sleep time, default is 0

        Args:
            fleet_send_sleep_seconds(int): fleet send sleep time

        Examples:
            .. code-block:: python

728
              import paddle
S
ShenLiang 已提交
729
              paddle.enable_static()
730 731
              dataset = paddle.distributed.InMemoryDataset()
              dataset._set_fleet_send_sleep_seconds(2)
732 733 734 735

        """
        self.fleet_send_sleep_seconds = fleet_send_sleep_seconds

736
    def _set_merge_by_lineid(self, merge_size=2):
737 738 739 740 741 742 743 744 745 746
        """
        Set merge by line id, instances of same line id will be merged after
        shuffle, you should parse line id in data generator.

        Args:
            merge_size(int): ins size to merge. default is 2.

        Examples:
            .. code-block:: python

747
              import paddle
S
ShenLiang 已提交
748
              paddle.enable_static()
749 750
              dataset = paddle.distributed.InMemoryDataset()
              dataset._set_merge_by_lineid()
751 752 753 754 755 756

        """
        self.dataset.set_merge_by_lineid(merge_size)
        self.merge_by_lineid = True
        self.parse_ins_id = True

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
    def _set_shuffle_by_uid(self, enable_shuffle_uid):
        """
        Set if Dataset need to shuffle by uid.

        Args:
            set_shuffle_by_uid(bool): if shuffle according to uid or not

        Examples:
            .. code-block:: python

              import paddle
              paddle.enable_static()
              dataset = paddle.distributed.InMemoryDataset()
              dataset._set_shuffle_by_uid(True)
        """
        self.dataset.set_shuffle_by_uid(enable_shuffle_uid)

774
    def _set_generate_unique_feasigns(self, generate_uni_feasigns, shard_num):
775 776 777 778
        self.dataset.set_generate_unique_feasigns(generate_uni_feasigns)
        self.gen_uni_feasigns = generate_uni_feasigns
        self.local_shard_num = shard_num

779 780
    def _generate_local_tables_unlock(self, table_id, fea_dim, read_thread_num,
                                      consume_thread_num, shard_num):
781 782 783
        self.dataset.generate_local_tables_unlock(table_id, fea_dim,
                                                  read_thread_num,
                                                  consume_thread_num, shard_num)
784

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
    def set_date(self, date):
        """
        :api_attr: Static Graph

        Set training date for pull sparse parameters, saving and loading model. Only used in psgpu

        Args:
            date(str): training date(format : YYMMDD). eg.20211111

        Examples:
            .. code-block:: python

                import paddle
                paddle.enable_static()

                dataset = paddle.distributed.InMemoryDataset()
                slots = ["slot1", "slot2", "slot3", "slot4"]
                slots_vars = []
                for slot in slots:
                    var = paddle.static.data(
                        name=slot, shape=[None, 1], dtype="int64", lod_level=1)
                    slots_vars.append(var)
                dataset.init(
                    batch_size=1,
                    thread_num=2,
                    input_type=1,
                    pipe_command="cat",
                    use_var=slots_vars)
                dataset.set_date("20211111")
        """
        year = int(date[:4])
        month = int(date[4:6])
        day = int(date[6:])
        if self.use_ps_gpu and core._is_compiled_with_heterps():
            self.psgpu.set_date(year, month, day)

W
wangzhen38 已提交
821 822 823 824 825 826
    def tdm_sample(self, tree_name, tree_path, tdm_layer_counts,
                   start_sample_layer, with_hierachy, seed, id_slot):
        self.dataset.tdm_sample(tree_name, tree_path, tdm_layer_counts,
                                start_sample_layer, with_hierachy, seed,
                                id_slot)

827
    def load_into_memory(self, is_shuffle=False):
828
        """
829 830
        :api_attr: Static Graph
        
831 832
        Load data into memory

833 834 835
        Args:
            is_shuffle(bool): whether to use local shuffle, default is False

836 837 838
        Examples:
            .. code-block:: python

S
ShenLiang 已提交
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
                import paddle
                paddle.enable_static()
                
                dataset = paddle.distributed.InMemoryDataset()
                slots = ["slot1", "slot2", "slot3", "slot4"]
                slots_vars = []
                for slot in slots:
                    var = paddle.static.data(
                        name=slot, shape=[None, 1], dtype="int64", lod_level=1)
                    slots_vars.append(var)
                dataset.init(
                    batch_size=1,
                    thread_num=2,
                    input_type=1,
                    pipe_command="cat",
                    use_var=slots_vars)
                filelist = ["a.txt", "b.txt"]
                dataset.set_filelist(filelist)
                dataset.load_into_memory()
858 859
        """
        self._prepare_to_run()
860 861 862 863 864
        if not self.use_ps_gpu:
            self.dataset.load_into_memory()
        elif core._is_compiled_with_heterps():
            self.psgpu.set_dataset(self.dataset)
            self.psgpu.load_into_memory(is_shuffle)
865 866 867

    def preload_into_memory(self, thread_num=None):
        """
868 869
        :api_attr: Static Graph

870 871 872 873 874 875 876 877
        Load data into memory in async mode

        Args:
            thread_num(int): preload thread num

        Examples:
            .. code-block:: python

S
ShenLiang 已提交
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
                import paddle
                paddle.enable_static()

                dataset = paddle.distributed.InMemoryDataset()
                slots = ["slot1", "slot2", "slot3", "slot4"]
                slots_vars = []
                for slot in slots:
                    var = paddle.static.data(
                        name=slot, shape=[None, 1], dtype="int64", lod_level=1)
                    slots_vars.append(var)
                dataset.init(
                    batch_size=1,
                    thread_num=2,
                    input_type=1,
                    pipe_command="cat",
                    use_var=slots_vars)
                filelist = ["a.txt", "b.txt"]
                dataset.set_filelist(filelist)
                dataset.preload_into_memory()
                dataset.wait_preload_done()
898 899 900 901 902 903 904 905 906 907
        """
        self._prepare_to_run()
        if thread_num is None:
            thread_num = self.thread_num
        self.dataset.set_preload_thread_num(thread_num)
        self.dataset.create_preload_readers()
        self.dataset.preload_into_memory()

    def wait_preload_done(self):
        """
908 909
        :api_attr: Static Graph

910 911 912 913 914
        Wait preload_into_memory done

        Examples:
            .. code-block:: python

S
ShenLiang 已提交
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
                import paddle
                paddle.enable_static()

                dataset = paddle.distributed.InMemoryDataset()
                slots = ["slot1", "slot2", "slot3", "slot4"]
                slots_vars = []
                for slot in slots:
                    var = paddle.static.data(
                        name=slot, shape=[None, 1], dtype="int64", lod_level=1)
                    slots_vars.append(var)
                dataset.init(
                    batch_size=1,
                    thread_num=2,
                    input_type=1,
                    pipe_command="cat",
                    use_var=slots_vars)
                filelist = ["a.txt", "b.txt"]
                dataset.set_filelist(filelist)
                dataset.preload_into_memory()
                dataset.wait_preload_done()
935 936 937 938 939 940
        """
        self.dataset.wait_preload_done()
        self.dataset.destroy_preload_readers()

    def local_shuffle(self):
        """
941 942
        :api_attr: Static Graph

943 944 945 946 947
        Local shuffle

        Examples:
            .. code-block:: python

S
ShenLiang 已提交
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
                import paddle
                paddle.enable_static()

                dataset = paddle.distributed.InMemoryDataset()
                slots = ["slot1", "slot2", "slot3", "slot4"]
                slots_vars = []
                for slot in slots:
                    var = paddle.static.data(
                        name=slot, shape=[None, 1], dtype="int64", lod_level=1)
                    slots_vars.append(var)
                dataset.init(
                    batch_size=1,
                    thread_num=2,
                    input_type=1,
                    pipe_command="cat",
                    use_var=slots_vars)
                filelist = ["a.txt", "b.txt"]
                dataset.set_filelist(filelist)
                dataset.load_into_memory()
                dataset.local_shuffle()
968 969 970 971 972
        """
        self.dataset.local_shuffle()

    def global_shuffle(self, fleet=None, thread_num=12):
        """
973 974
        :api_attr: Static Graph

975 976 977 978 979 980 981 982
        Global shuffle.
        Global shuffle can be used only in distributed mode. i.e. multiple
        processes on single machine or multiple machines training together.
        If you run in distributed mode, you should pass fleet instead of None.

        Examples:
            .. code-block:: python

S
ShenLiang 已提交
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
                import paddle
                paddle.enable_static()

                dataset = paddle.distributed.InMemoryDataset()
                slots = ["slot1", "slot2", "slot3", "slot4"]
                slots_vars = []
                for slot in slots:
                    var = paddle.static.data(
                        name=slot, shape=[None, 1], dtype="int64", lod_level=1)
                    slots_vars.append(var)
                dataset.init(
                    batch_size=1,
                    thread_num=2,
                    input_type=1,
                    pipe_command="cat",
                    use_var=slots_vars)
                filelist = ["a.txt", "b.txt"]
                dataset.set_filelist(filelist)
                dataset.load_into_memory()
                dataset.global_shuffle()
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

        Args:
            fleet(Fleet): fleet singleton. Default None.
            thread_num(int): shuffle thread num. Default is 12.

        """
        trainer_num = 1
        if fleet is not None:
            fleet._role_maker.barrier_worker()
            trainer_num = fleet.worker_num()
        if self.fleet_send_batch_size is None:
            self.fleet_send_batch_size = 1024
        if self.fleet_send_sleep_seconds is None:
            self.fleet_send_sleep_seconds = 0
        self.dataset.register_client2client_msg_handler()
        self.dataset.set_trainer_num(trainer_num)
        self.dataset.set_fleet_send_batch_size(self.fleet_send_batch_size)
        self.dataset.set_fleet_send_sleep_seconds(self.fleet_send_sleep_seconds)
        if fleet is not None:
            fleet._role_maker.barrier_worker()
        self.dataset.global_shuffle(thread_num)
        if fleet is not None:
            fleet._role_maker.barrier_worker()
        if self.merge_by_lineid:
            self.dataset.merge_by_lineid()
        if fleet is not None:
            fleet._role_maker.barrier_worker()

    def release_memory(self):
        """
        :api_attr: Static Graph
        
        Release InMemoryDataset memory data, when data will not be used again.

        Examples:
            .. code-block:: python

S
ShenLiang 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
                import paddle
                paddle.enable_static()
                
                dataset = paddle.distributed.InMemoryDataset()
                slots = ["slot1", "slot2", "slot3", "slot4"]
                slots_vars = []
                for slot in slots:
                    var = paddle.static.data(
                        name=slot, shape=[None, 1], dtype="int64", lod_level=1)
                    slots_vars.append(var)
                dataset.init(
                    batch_size=1,
                    thread_num=2,
                    input_type=1,
                    pipe_command="cat",
                    use_var=slots_vars)
                filelist = ["a.txt", "b.txt"]
                dataset.set_filelist(filelist)
                dataset.load_into_memory()
                dataset.global_shuffle()
                exe = paddle.static.Executor(paddle.CPUPlace())
                startup_program = paddle.static.Program()
                main_program = paddle.static.Program()
                exe.run(startup_program)
                exe.train_from_dataset(main_program, dataset)
                dataset.release_memory()
1066 1067 1068 1069 1070 1071

        """
        self.dataset.release_memory()

    def get_memory_data_size(self, fleet=None):
        """
1072 1073
        :api_attr: Static Graph

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
        Get memory data size, user can call this function to know the num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of memory data.

        Examples:
            .. code-block:: python

S
ShenLiang 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
                import paddle
                paddle.enable_static()

                dataset = paddle.distributed.InMemoryDataset()
                slots = ["slot1", "slot2", "slot3", "slot4"]
                slots_vars = []
                for slot in slots:
                    var = paddle.static.data(
                        name=slot, shape=[None, 1], dtype="int64", lod_level=1)
                    slots_vars.append(var)
                dataset.init(
                    batch_size=1,
                    thread_num=2,
                    input_type=1,
                    pipe_command="cat",
                    use_var=slots_vars)
                filelist = ["a.txt", "b.txt"]
                dataset.set_filelist(filelist)
                dataset.load_into_memory()
                print dataset.get_memory_data_size()
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

        """
        import numpy as np
        local_data_size = self.dataset.get_memory_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
            fleet._role_maker.all_reduce_worker(local_data_size,
                                                global_data_size)
            return global_data_size[0]
        return local_data_size[0]

    def get_shuffle_data_size(self, fleet=None):
        """
1123 1124
        :api_attr: Static Graph

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
        Get shuffle data size, user can call this function to know the num
        of ins in all workers after local/global shuffle.

        Note:
            This function may cause bad performance to local shuffle,
            because it has barrier. It does not affect global shuffle.

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of shuffle data.

        Examples:
            .. code-block:: python

S
ShenLiang 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
                import paddle
                paddle.enable_static()
                
                dataset = paddle.distributed.InMemoryDataset()
                dataset = paddle.distributed.InMemoryDataset()
                slots = ["slot1", "slot2", "slot3", "slot4"]
                slots_vars = []
                for slot in slots:
                    var = paddle.static.data(
                        name=slot, shape=[None, 1], dtype="int64", lod_level=1)
                    slots_vars.append(var)
                dataset.init(
                    batch_size=1,
                    thread_num=2,
                    input_type=1,
                    pipe_command="cat",
                    use_var=slots_vars)
                filelist = ["a.txt", "b.txt"]
                dataset.set_filelist(filelist)
                dataset.load_into_memory()
                dataset.global_shuffle()
                print dataset.get_shuffle_data_size()
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174

        """
        import numpy as np
        local_data_size = self.dataset.get_shuffle_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
            fleet._role_maker.all_reduce_worker(local_data_size,
                                                global_data_size)
            return global_data_size[0]
        return local_data_size[0]

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
    def _set_fea_eval(self, record_candidate_size, fea_eval=True):
        """
        set fea eval mode for slots shuffle to debug the importance level of
        slots(features), fea_eval need to be set True for slots shuffle.
        
        Args:
            record_candidate_size(int): size of instances candidate to shuffle 
                                        one slot
            fea_eval(bool): whether enable fea eval mode to enable slots shuffle.
                            default is True.
            
        Examples:
            .. code-block:: python

            import paddle
S
ShenLiang 已提交
1190
            paddle.enable_static()
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
            dataset = paddle.distributed.InMemoryDataset()
            dataset._set_fea_eval(1000000, True)

        """
        if fea_eval:
            self.dataset.set_fea_eval(fea_eval, record_candidate_size)
        self.fea_eval = fea_eval

    def slots_shuffle(self, slots):
        """
        Slots Shuffle 
        Slots Shuffle is a shuffle method in slots level, which is usually used 
        in sparse feature with large scale of instances. To compare the metric, i.e.
        auc while doing slots shuffle on one or several slots with baseline to 
        evaluate the importance level of slots(features).
        
        Args:
            slots(list[string]): the set of slots(string) to do slots shuffle.

        Examples:
S
ShenLiang 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
            .. code-block:: python

                import paddle
                paddle.enable_static()
                
                dataset = paddle.distributed.InMemoryDataset()
                dataset._init_distributed_settings(fea_eval=True)
                slots = ["slot1", "slot2", "slot3", "slot4"]
                slots_vars = []
                for slot in slots:
                    var = paddle.static.data(
                        name=slot, shape=[None, 1], dtype="int64", lod_level=1)
                    slots_vars.append(var)
                dataset.init(
                    batch_size=1,
                    thread_num=2,
                    input_type=1,
                    pipe_command="cat",
                    use_var=slots_vars)
                filelist = ["a.txt", "b.txt"]
                dataset.set_filelist(filelist)
                dataset.load_into_memory()
                dataset.slots_shuffle(['slot1'])
1234 1235 1236 1237 1238
        """
        if self.fea_eval:
            slots_set = set(slots)
            self.dataset.slots_shuffle(slots_set)

1239 1240 1241

class QueueDataset(DatasetBase):
    """
1242 1243
    :api_attr: Static Graph

1244 1245 1246 1247 1248
    QueueDataset, it will process data streamly.

    Examples:
        .. code-block:: python

1249 1250
          import paddle
          dataset = paddle.distributed.QueueDataset()
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260

    """

    def __init__(self):
        """
        Initialize QueueDataset
        """
        super(QueueDataset, self).__init__()
        self.proto_desc.name = "MultiSlotDataFeed"

1261 1262
    def init(self, **kwargs):
        """
1263 1264
        :api_attr: Static Graph

1265 1266 1267 1268
        should be called only once in user's python scripts to initialize setings of dataset instance
        """
        super(QueueDataset, self).init(**kwargs)

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
    def _prepare_to_run(self):
        """
        Set data_feed_desc/thread num/filelist before run,
        user no need to call this function.
        """
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        if self.thread_num == 0:
            self.thread_num = 1
        self.dataset.set_thread_num(self.thread_num)
        self.dataset.set_filelist(self.filelist)
1280
        self.dataset.set_data_feed_desc(self._desc())
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
        self.dataset.create_readers()


class FileInstantDataset(DatasetBase):
    """
    FileInstantDataset, it will process data streamly.

    Examples:
        .. code-block:: python

1291 1292
          import paddle
          dataset = paddle.distributed.fleet.FileInstantDataset()
1293 1294 1295 1296 1297 1298 1299 1300 1301
    """

    def __init__(self):
        """
        Initialize FileInstantDataset
        """
        super(FileInstantDataset, self).__init__()
        self.proto_desc.name = "MultiSlotFileInstantDataFeed"

1302
    def init(self, **kwargs):
1303
        """
1304
        should be called only once in user's python scripts to initialize setings of dataset instance
1305
        """
1306
        super(FileInstantDataset, self).init(**kwargs)
1307 1308 1309 1310 1311 1312 1313 1314 1315


class BoxPSDataset(InMemoryDataset):
    """
    BoxPSDataset: derived from InMemoryDataset.

    Examples:
        .. code-block:: python

1316 1317
          import paddle
          dataset = paddle.distributed.fleet.BoxPSDataset()
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
    """

    def __init__(self):
        """
        Initialize BoxPSDataset
        """
        super(BoxPSDataset, self).__init__()
        self.boxps = core.BoxPS(self.dataset)
        self.proto_desc.name = "PaddleBoxDataFeed"

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
    def init(self, **kwargs):
        """
        should be called only once in user's python scripts to initialize setings of dataset instance
        """
        super(BoxPSDataset, self).init(**kwargs)

        rank_offset = kwargs.get("rank_offset", "")
        self._set_rank_offset(rank_offset)
        pv_batch_size = kwargs.get("pv_batch_size", 1)
        self._set_pv_batch_size(pv_batch_size)
        parse_logkey = kwargs.get("parse_logkey", False)
        self._set_parse_logkey(parse_logkey)
        merge_by_sid = kwargs.get("merge_by_sid", False)
        self._set_merge_by_sid(merge_by_sid)
        enable_pv_merge = kwargs.get("enable_pv_merge", False)
        self._set_enable_pv_merge(enable_pv_merge)

    def _set_rank_offset(self, rank_offset):
        """
        Set rank_offset for merge_pv. It set the message of Pv.

        Examples:
            .. code-block:: python

              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
              dataset._set_rank_offset("rank_offset")

        Args:
            rank_offset(str): rank_offset's name

        """
        self.proto_desc.rank_offset = rank_offset

    def _set_pv_batch_size(self, pv_batch_size):
        """
        Set pv batch size. It will be effective during enable_pv_merge

        Examples:
            .. code-block:: python

              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
              dataset._set_pv_batch_size(128)
        Args:
            pv_batch_size(int): pv batch size

        """
        self.proto_desc.pv_batch_size = pv_batch_size

    def _set_parse_logkey(self, parse_logkey):
        """
        Set if Dataset need to parse logkey

        Args:
            parse_content(bool): if parse logkey or not

        Examples:
            .. code-block:: python

              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
              dataset._set_parse_logkey(True)

        """
        self.parse_logkey = parse_logkey

    def _set_merge_by_sid(self, merge_by_sid):
        """
        Set if Dataset need to merge sid. If not, one ins means one Pv.

        Args:
            merge_by_sid(bool): if merge sid or not

        Examples:
            .. code-block:: python

              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
              dataset._set_merge_by_sid(True)

        """
        self.merge_by_sid = merge_by_sid

    def _set_enable_pv_merge(self, enable_pv_merge):
        """
        Set if Dataset need to merge pv.

        Args:
            enable_pv_merge(bool): if enable_pv_merge or not

        Examples:
            .. code-block:: python

              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
              dataset._set_enable_pv_merge(True)

        """
        self.enable_pv_merge = enable_pv_merge

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
    def set_date(self, date):
        """
        Workaround for date
        """
        year = int(date[:4])
        month = int(date[4:6])
        day = int(date[6:])
        self.boxps.set_date(year, month, day)

    def begin_pass(self):
        """
        Begin Pass
        Notify BoxPS to load sparse parameters of next pass to GPU Memory 

        Examples:
            .. code-block:: python

1446 1447
              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
              dataset.begin_pass()
        """
        self.boxps.begin_pass()

    def end_pass(self, need_save_delta):
        """
        End Pass
        Notify BoxPS that current pass ended 
        Examples:
            .. code-block:: python

1459 1460
              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
              dataset.end_pass(True)
        """
        self.boxps.end_pass(need_save_delta)

    def wait_preload_done(self):
        """
        Wait async preload done
        Wait Until Feed Pass Done
        Examples:
            .. code-block:: python

1472 1473
              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self.boxps.wait_feed_pass_done()

    def load_into_memory(self):
        """
        Load next pass into memory and notify boxps to fetch its emb from SSD
        Examples:
            .. code-block:: python

1487 1488
              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
	    """
        self._prepare_to_run()
        self.boxps.load_into_memory()

    def preload_into_memory(self):
        """
        Begin async preload next pass while current pass may be training
        Examples:
            .. code-block:: python

1502 1503
              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
        """
        self._prepare_to_run()
        self.boxps.preload_into_memory()

    def _dynamic_adjust_before_train(self, thread_num):
        if not self.is_user_set_queue_num:
            self.dataset.dynamic_adjust_channel_num(thread_num, True)
        self.dataset.dynamic_adjust_readers_num(thread_num)

    def _dynamic_adjust_after_train(self):
        pass

    def slots_shuffle(self, slots):
        """
        Slots Shuffle 
        Slots Shuffle is a shuffle method in slots level, which is usually used 
        in sparse feature with large scale of instances. To compare the metric, i.e.
        auc while doing slots shuffle on one or several slots with baseline to 
        evaluate the importance level of slots(features).
        
        Args:
            slots(list[string]): the set of slots(string) to do slots shuffle.

        Examples:
1531 1532
            import paddle
            dataset = paddle.distributed.fleet.BoxPSDataset()
1533 1534 1535 1536 1537 1538
            dataset.set_merge_by_lineid()
            #suppose there is a slot 0
            dataset.slots_shuffle(['0'])
        """
        slots_set = set(slots)
        self.boxps.slots_shuffle(slots_set)
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617

    def set_current_phase(self, current_phase):
        """
        Set current phase in train. It is useful for untest.
        current_phase : 1 for join, 0 for update.

        Examples:
            .. code-block:: python

              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.set_current_phase(1)

        """
        self.dataset.set_current_phase(current_phase)

    def get_pv_data_size(self):
        """
        Get memory data size of Pv, user can call this function to know the pv num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Returns:
            The size of memory pv data.

        Examples:
            .. code-block:: python

              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              print dataset.get_pv_data_size()

        """
        return self.dataset.get_pv_data_size()

    def preprocess_instance(self):
        """
        Merge pv instance and convey it from input_channel to input_pv_channel. 
        It will be effective when enable_pv_merge_ is True.

        Examples:
            .. code-block:: python

              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.preprocess_instance()

        """
        self.dataset.preprocess_instance()

    def postprocess_instance(self):
        """
        Divide pv instance and convey it to input_channel.

        Examples:
            .. code-block:: python

              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.preprocess_instance()
              exe.train_from_dataset(dataset)
              dataset.postprocess_instance()

        """
        self.dataset.postprocess_instance()