dataset.py 48.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This is definition of dataset class, which is high performance IO."""

import paddle
from paddle.fluid.proto import data_feed_pb2
from google.protobuf import text_format
import paddle.fluid.core as core


class DatasetBase(object):
    """ Base dataset class. """

    def __init__(self):
        """ Init. """
        # define class name here
        # to decide whether we need create in memory instance
        self.proto_desc = data_feed_pb2.DataFeedDesc()
        self.proto_desc.pipe_command = "cat"
        self.dataset = core.Dataset("MultiSlotDataset")
        self.thread_num = 1
        self.filelist = []

35 36 37 38 39 40 41 42 43
    def init(self,
             batch_size=1,
             thread_num=1,
             use_var=[],
             pipe_command="cat",
             input_type=0,
             fs_name="",
             fs_ugi="",
             download_cmd="cat"):
44
        """
45 46
        should be called only once in user's python scripts to initialize setings of dataset instance. 
        Normally, it is called by InMemoryDataset or QueueDataset.
47 48

        Args:
49 50 51 52 53 54 55 56
            batch_size(int): batch size. It will be effective during training. default is 1.
            thread_num(int): thread num, it is the num of readers. default is 1.
            use_var(list): list of variables. Variables which you will use. default is [].
            pipe_command(str): pipe command of current dataset. A pipe command is a UNIX pipeline command that can be used only. default is "cat"
            input_type(int): the input type of generated input. 0 is for one sample, 1 is for one batch. defalut is 0.
            fs_name(str): fs name. default is "".
            fs_ugi(str): fs ugi. default is "".
            download_cmd(str): customized download command. default is "cat"
57 58 59


        """
60 61 62 63 64 65 66
        self._set_batch_size(batch_size)
        self._set_thread(thread_num)
        self._set_use_var(use_var)
        self._set_pipe_command(pipe_command)
        self._set_input_type(input_type)
        self._set_hdfs_config(fs_name, fs_ugi)
        self._set_download_cmd(download_cmd)
67

68
    def _set_pipe_command(self, pipe_command):
69
        """
70 71
        Set pipe command of current dataset
        A pipe command is a UNIX pipeline command that can be used only
72 73 74 75

        Examples:
            .. code-block:: python

76 77 78
              import paddle
              dataset = paddle.distributed.fleet.dataset.DatasetBase()
              dataset._set_pipe_command("python my_script.py")
79 80

        Args:
81
            pipe_command(str): pipe command
82 83

        """
84
        self.proto_desc.pipe_command = pipe_command
85

86
    def _set_batch_size(self, batch_size):
87 88 89 90 91 92
        """
        Set batch size. Will be effective during training

        Examples:
            .. code-block:: python

93 94 95
              import paddle
              dataset = paddle.distributed.fleet.DatasetBase()
              dataset._set_batch_size(128)
96 97 98 99 100 101 102

        Args:
            batch_size(int): batch size

        """
        self.proto_desc.batch_size = batch_size

103
    def _set_thread(self, thread_num):
104 105 106 107 108 109
        """
        Set thread num, it is the num of readers.

        Examples:
            .. code-block:: python

110 111 112
              import paddle
              dataset = paddle.distributed.fleet.DatasetBase()
              dataset._set_thread(12)
113 114 115 116 117 118 119 120 121

        Args:
            thread_num(int): thread num
        """
        self.dataset.set_thread_num(thread_num)
        self.thread_num = thread_num

    def set_filelist(self, filelist):
        """
122
        Set file list in current worker. The filelist is indicated by a list of file names (string).
123 124 125 126

        Examples:
            .. code-block:: python

127 128
              import paddle
              dataset = paddle.distributed.fleet.DatasetBase()
129 130 131
              dataset.set_filelist(['a.txt', 'b.txt'])

        Args:
132
            filelist(list[str]): list of file names of inputs.
133 134 135 136
        """
        self.dataset.set_filelist(filelist)
        self.filelist = filelist

137
    def _set_input_type(self, input_type):
138 139
        self.proto_desc.input_type = input_type

140
    def _set_use_var(self, var_list):
141 142 143 144 145 146
        """
        Set Variables which you will use.

        Examples:
            .. code-block:: python

147 148 149
              import paddle
              dataset = paddle.distributed.fleet.DatasetBase()
              dataset._set_use_var([data, label])
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

        Args:
            var_list(list): variable list
        """
        multi_slot = self.proto_desc.multi_slot_desc
        for var in var_list:
            slot_var = multi_slot.slots.add()
            slot_var.is_used = True
            slot_var.name = var.name
            if var.lod_level == 0:
                slot_var.is_dense = True
                slot_var.shape.extend(var.shape)
            if var.dtype == core.VarDesc.VarType.FP32:
                slot_var.type = "float"
            elif var.dtype == core.VarDesc.VarType.INT64:
                slot_var.type = "uint64"
            else:
                raise ValueError(
168
                    "Currently, paddle.distributed.fleet.dataset only supports dtype=float32 and dtype=int64"
169 170
                )

171
    def _set_hdfs_config(self, fs_name, fs_ugi):
172 173 174 175 176 177
        """
        Set hdfs config: fs name ad ugi

        Examples:
            .. code-block:: python

178 179 180
              import paddle
              dataset = paddle.distributed.fleet.DatasetBase()
              dataset._set_hdfs_config("my_fs_name", "my_fs_ugi")
181 182 183 184 185 186 187

        Args:
            fs_name(str): fs name
            fs_ugi(str): fs ugi
        """
        self.dataset.set_hdfs_config(fs_name, fs_ugi)

188
    def _set_download_cmd(self, download_cmd):
189 190 191 192 193 194
        """
        Set customized download cmd: download_cmd

        Examples:
            .. code-block:: python

195 196 197
              import paddle
              dataset = paddle.distributed.fleet.DatasetBase()
              dataset._set_download_cmd("./read_from_afs")
198 199 200 201 202 203 204 205 206 207 208 209 210 211

        Args:
            download_cmd(str): customized download command
        """
        self.dataset.set_download_cmd(download_cmd)

    def _prepare_to_run(self):
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        self.dataset.set_thread_num(self.thread_num)
212
        self.dataset.set_data_feed_desc(self._desc())
213 214 215 216 217
        self.dataset.create_readers()

    def _finish_to_run(self):
        self.dataset.destroy_readers()

218
    def _desc(self):
219 220 221 222 223 224
        """
        Returns a protobuf message for this DataFeedDesc

        Examples:
            .. code-block:: python

225 226 227
              import paddle
              dataset = paddle.distributed.fleet.DatasetBase()
              print(dataset._desc())
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

        Returns:
            A string message
        """
        return text_format.MessageToString(self.proto_desc)

    def _dynamic_adjust_before_train(self, thread_num):
        pass

    def _dynamic_adjust_after_train(self):
        pass


class InMemoryDataset(DatasetBase):
    """
243
    :api_attr: Static Graph
S
ShenLiang 已提交
244 245
    
    It will load data into memory and shuffle data before training.
246

S
ShenLiang 已提交
247 248 249 250 251 252
    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
            dataset = paddle.distributed.InMemoryDataset()
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

    """

    def __init__(self):
        """ Init. """
        super(InMemoryDataset, self).__init__()
        self.proto_desc.name = "MultiSlotInMemoryDataFeed"
        self.fleet_send_batch_size = None
        self.is_user_set_queue_num = False
        self.queue_num = None
        self.parse_ins_id = False
        self.parse_content = False
        self.parse_logkey = False
        self.merge_by_sid = True
        self.enable_pv_merge = False
        self.merge_by_lineid = False
        self.fleet_send_sleep_seconds = None

271 272
    def _init_distributed_settings(self, **kwargs):
        """
273 274
        :api_attr: Static Graph

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
        should be called only once in user's python scripts to initialize distributed-related setings of dataset instance
        Args:
            kwargs: Keyword arguments. Currently, we support following keys in **kwargs:

            merge_size(int): ins size to merge, if merge_size > 0, set merge by line id, 
                             instances of same line id will be merged after shuffle, 
                             you should parse line id in data generator. default is -1.
            parse_ins_id(bool): Set if Dataset need to parse ins_id. default is False.
            parse_content(bool): Set if Dataset need to parse content. default is False.
            fleet_send_batch_size(int): Set fleet send batch size in one rpc, default is 1024
            fleet_send_sleep_seconds(int): Set fleet send sleep time, default is 0
            fea_eval(bool): Set if Dataset need to do feature importance evaluation using slots shuffle.
                            default is False.
            candidate_size(int): if fea_eval is set True, set the candidate size used in slots shuffle.

        Examples:
            .. code-block:: python

              import paddle
S
ShenLiang 已提交
294
              paddle.enable_static()
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
              dataset = paddle.distributed.InMemoryDataset()
              dataset.init(
                    batch_size=1,
                    thread_num=2,
                    input_type=1,
                    pipe_command="cat",
                    use_var=[])
              dataset._init_distributed_settings(
                    parse_ins_id=True,
                    parse_content=True,
                    fea_eval=True,
                    candidate_size=10000)
              
        """
        merge_size = kwargs.get("merge_size", -1)
        if merge_size > 0:
            self._set_merge_by_lineid(merge_size)

        parse_ins_id = kwargs.get("parse_ins_id", False)
        self._set_parse_ins_id(parse_ins_id)

        parse_content = kwargs.get("parse_content", False)
        self._set_parse_content(parse_content)

        fleet_send_batch_size = kwargs.get("fleet_send_batch_size", None)
        if fleet_send_batch_size:
            self._set_fleet_send_batch_size(fleet_send_batch_size)

        fleet_send_sleep_seconds = kwargs.get("fleet_send_sleep_seconds", None)
        if fleet_send_sleep_seconds:
            self._set_fleet_send_sleep_seconds(fleet_send_sleep_seconds)

        fea_eval = kwargs.get("fea_eval", False)
        if fea_eval:
            candidate_size = kwargs.get("candidate_size", 10000)
            self._set_fea_eval(candidate_size, True)

    def update_settings(self, **kwargs):
        """
334 335
        :api_attr: Static Graph

S
ShenLiang 已提交
336 337
        should be called in user's python scripts to update setings of dataset instance.

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
        Args:
            kwargs: Keyword arguments. Currently, we support following keys in **kwargs,
                    including single node settings and advanced distributed related settings:
            batch_size(int): batch size. It will be effective during training. default is 1.
            thread_num(int): thread num, it is the num of readers. default is 1.
            use_var(list): list of variables. Variables which you will use. default is [].
            input_type(int): the input type of generated input. 0 is for one sample, 1 is for one batch. defalut is 0.
            fs_name(str): fs name. default is "".
            fs_ugi(str): fs ugi. default is "".
            pipe_command(str): pipe command of current dataset. A pipe command is a UNIX pipeline command that can be used only. default is "cat"
            download_cmd(str): customized download command. default is "cat"
            data_feed_type(str): data feed type used in c++ code. default is "MultiSlotInMemoryDataFeed".
            queue_num(int): Dataset output queue num, training threads get data from queues. default is-1, which is set same as thread number in c++.

            merge_size(int): ins size to merge, if merge_size > 0, set merge by line id, 
                             instances of same line id will be merged after shuffle, 
                             you should parse line id in data generator. default is -1.
            parse_ins_id(bool): Set if Dataset need to parse ins_id. default is False.
            parse_content(bool): Set if Dataset need to parse content. default is False.
            fleet_send_batch_size(int): Set fleet send batch size in one rpc, default is 1024
            fleet_send_sleep_seconds(int): Set fleet send sleep time, default is 0
            fea_eval(bool): Set if Dataset need to do feature importance evaluation using slots shuffle.
                            default is False.
            candidate_size(int): if fea_eval is set True, set the candidate size used in slots shuffle.

        Examples:
            .. code-block:: python

S
ShenLiang 已提交
366 367 368 369 370
                import paddle    
                paddle.enable_static()

                dataset = paddle.distributed.InMemoryDataset()
                dataset.init(
371 372 373 374 375
                    batch_size=1,
                    thread_num=2,
                    input_type=1,
                    pipe_command="cat",
                    use_var=[])
S
ShenLiang 已提交
376
                dataset._init_distributed_settings(
377 378 379 380
                    parse_ins_id=True,
                    parse_content=True,
                    fea_eval=True,
                    candidate_size=10000)
S
ShenLiang 已提交
381
                dataset.update_settings(batch_size=2)
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
            
        """
        for key in kwargs:
            if key == "pipe_command":
                self._set_pipe_command(kwargs[key])
            elif key == "batch_size":
                self._set_batch_size(kwargs[key])
            elif key == "thread_num":
                self._set_thread(kwargs[key])
            elif key == "use_var":
                self._set_use_var(kwargs[key])
            elif key == "input_type":
                self._set_input_type(kwargs[key])
            elif key == "fs_name" and "fs_ugi" in kwargs:
                self._set_hdfs_config(kwargs[key], kwargs["fs_ugi"])
            elif key == "download_cmd":
                self._set_download_cmd(kwargs[key])
            elif key == "merge_size" and kwargs.get("merge_size", -1) > 0:
                self._set_merge_by_lineid(kwargs[key])
            elif key == "parse_ins_id":
                self._set_parse_ins_id(kwargs[key])
            elif key == "parse_content":
                self._set_parse_content(kwargs[key])
            elif key == "fleet_send_batch_size":
                self._set_fleet_send_batch_size(kwargs[key])
            elif key == "fleet_send_sleep_seconds":
                self._set_fleet_send_sleep_seconds(kwargs[key])
            elif key == "fea_eval" and kwargs[key] == True:
                candidate_size = kwargs.get("candidate_size", 10000)
                self._set_fea_eval(candidate_size, True)

    def init(self, **kwargs):
        """
415 416
        :api_attr: Static Graph

417
        should be called only once in user's python scripts to initialize setings of dataset instance
S
ShenLiang 已提交
418
        
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
        Args:
            kwargs: Keyword arguments. Currently, we support following keys in **kwargs:
            
            batch_size(int): batch size. It will be effective during training. default is 1.
            thread_num(int): thread num, it is the num of readers. default is 1.
            use_var(list): list of variables. Variables which you will use. default is [].
            input_type(int): the input type of generated input. 0 is for one sample, 1 is for one batch. defalut is 0.
            fs_name(str): fs name. default is "".
            fs_ugi(str): fs ugi. default is "".
            pipe_command(str): pipe command of current dataset. A pipe command is a UNIX pipeline command that can be used only. default is "cat"
            download_cmd(str): customized download command. default is "cat"
            data_feed_type(str): data feed type used in c++ code. default is "MultiSlotInMemoryDataFeed".
            queue_num(int): Dataset output queue num, training threads get data from queues. default is -1, which is set same as thread number in c++.

        Examples:
            .. code-block:: python

                import paddle
S
ShenLiang 已提交
437 438 439
                import os
                paddle.enable_static()

440
                with open("test_queue_dataset_run_a.txt", "w") as f:
S
ShenLiang 已提交
441
                    data = "2 1 2 2 5 4 2 2 7 2 1 3"
442 443
                    f.write(data)
                with open("test_queue_dataset_run_b.txt", "w") as f:
S
ShenLiang 已提交
444
                    data = "2 1 2 2 5 4 2 2 7 2 1 3"
445 446 447 448 449
                    f.write(data)

                slots = ["slot1", "slot2", "slot3", "slot4"]
                slots_vars = []
                for slot in slots:
S
ShenLiang 已提交
450
                    var = paddle.static.data(
451 452 453 454 455 456 457 458 459 460 461 462 463
                        name=slot, shape=[None, 1], dtype="int64", lod_level=1)
                    slots_vars.append(var)

                dataset = paddle.distributed.InMemoryDataset()
                dataset.init(
                    batch_size=1,
                    thread_num=2,
                    input_type=1,
                    pipe_command="cat",
                    use_var=slots_vars)
                dataset.set_filelist(
                    ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"])
                dataset.load_into_memory()
464
                
S
ShenLiang 已提交
465
                place = paddle.CPUPlace()
466 467 468 469 470 471 472
                exe = paddle.static.Executor(place)
                startup_program = paddle.static.Program()
                main_program = paddle.static.Program()
                exe.run(startup_program)

                exe.train_from_dataset(main_program, dataset)
                
473 474
                os.remove("./test_queue_dataset_run_a.txt")
                os.remove("./test_queue_dataset_run_b.txt")
S
ShenLiang 已提交
475

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
        """
        batch_size = kwargs.get("batch_size", 1)
        thread_num = kwargs.get("thread_num", 1)
        use_var = kwargs.get("use_var", [])
        input_type = kwargs.get("input_type", 0)
        fs_name = kwargs.get("fs_name", "")
        fs_ugi = kwargs.get("fs_ugi", "")
        pipe_command = kwargs.get("pipe_command", "cat")
        download_cmd = kwargs.get("download_cmd", "cat")

        super(InMemoryDataset, self).init(
            batch_size=batch_size,
            thread_num=thread_num,
            use_var=use_var,
            pipe_command=pipe_command,
            input_type=input_type,
            fs_name=fs_name,
            fs_ugi=fs_ugi,
            download_cmd=download_cmd)

        data_feed_type = kwargs.get("data_feed_type",
                                    "MultiSlotInMemoryDataFeed")
        self._set_feed_type(data_feed_type)

        if kwargs.get("queue_num", -1) > 0:
            queue_num = kwargs.get("queue_num", -1)
            self._set_queue_num(queue_num)

    def _set_feed_type(self, data_feed_type):
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
        """
        Set data_feed_desc
        """
        self.proto_desc.name = data_feed_type

    def _prepare_to_run(self):
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
        if self.thread_num <= 0:
            self.thread_num = 1
        self.dataset.set_thread_num(self.thread_num)
        if self.queue_num is None:
            self.queue_num = self.thread_num
        self.dataset.set_queue_num(self.queue_num)
        self.dataset.set_parse_ins_id(self.parse_ins_id)
        self.dataset.set_parse_content(self.parse_content)
        self.dataset.set_parse_logkey(self.parse_logkey)
        self.dataset.set_merge_by_sid(self.merge_by_sid)
        self.dataset.set_enable_pv_merge(self.enable_pv_merge)
526
        self.dataset.set_data_feed_desc(self._desc())
527 528 529 530 531 532 533 534 535 536 537 538 539
        self.dataset.create_channel()
        self.dataset.create_readers()

    def _dynamic_adjust_before_train(self, thread_num):
        if not self.is_user_set_queue_num:
            self.dataset.dynamic_adjust_channel_num(thread_num, False)
        self.dataset.dynamic_adjust_readers_num(thread_num)

    def _dynamic_adjust_after_train(self):
        if not self.is_user_set_queue_num:
            self.dataset.dynamic_adjust_channel_num(self.thread_num, False)
        self.dataset.dynamic_adjust_readers_num(self.thread_num)

540
    def _set_queue_num(self, queue_num):
541 542 543 544 545 546 547 548 549
        """
        Set Dataset output queue num, training threads get data from queues

        Args:
            queue_num(int): dataset output queue num

        Examples:
            .. code-block:: python

550
              import paddle
S
ShenLiang 已提交
551
              paddle.enable_static()
552 553
              dataset = paddle.distributed.InMemoryDataset()
              dataset._set_queue_num(12)
554 555 556 557 558

        """
        self.is_user_set_queue_num = True
        self.queue_num = queue_num

559
    def _set_parse_ins_id(self, parse_ins_id):
560
        """
561
        Set if Dataset need to parse insid
562 563 564 565 566 567 568

        Args:
            parse_ins_id(bool): if parse ins_id or not

        Examples:
            .. code-block:: python

569
              import paddle
S
ShenLiang 已提交
570
              paddle.enable_static()
571 572
              dataset = paddle.distributed.InMemoryDataset()
              dataset._set_parse_ins_id(True)
573 574 575 576

        """
        self.parse_ins_id = parse_ins_id

577
    def _set_parse_content(self, parse_content):
578 579 580 581 582 583 584 585 586
        """
        Set if Dataset need to parse content

        Args:
            parse_content(bool): if parse content or not

        Examples:
            .. code-block:: python

587
              import paddle
S
ShenLiang 已提交
588
              paddle.enable_static()
589 590
              dataset = paddle.distributed.InMemoryDataset()
              dataset._set_parse_content(True)
591 592 593 594

        """
        self.parse_content = parse_content

595
    def _set_fleet_send_batch_size(self, fleet_send_batch_size=1024):
596 597 598 599 600 601 602 603 604
        """
        Set fleet send batch size, default is 1024

        Args:
            fleet_send_batch_size(int): fleet send batch size

        Examples:
            .. code-block:: python

605
              import paddle
S
ShenLiang 已提交
606
              paddle.enable_static()
607 608
              dataset = paddle.distributed.InMemoryDataset()
              dataset._set_fleet_send_batch_size(800)
609 610 611 612

        """
        self.fleet_send_batch_size = fleet_send_batch_size

613
    def _set_fleet_send_sleep_seconds(self, fleet_send_sleep_seconds=0):
614 615 616 617 618 619 620 621 622
        """
        Set fleet send sleep time, default is 0

        Args:
            fleet_send_sleep_seconds(int): fleet send sleep time

        Examples:
            .. code-block:: python

623
              import paddle
S
ShenLiang 已提交
624
              paddle.enable_static()
625 626
              dataset = paddle.distributed.InMemoryDataset()
              dataset._set_fleet_send_sleep_seconds(2)
627 628 629 630

        """
        self.fleet_send_sleep_seconds = fleet_send_sleep_seconds

631
    def _set_merge_by_lineid(self, merge_size=2):
632 633 634 635 636 637 638 639 640 641
        """
        Set merge by line id, instances of same line id will be merged after
        shuffle, you should parse line id in data generator.

        Args:
            merge_size(int): ins size to merge. default is 2.

        Examples:
            .. code-block:: python

642
              import paddle
S
ShenLiang 已提交
643
              paddle.enable_static()
644 645
              dataset = paddle.distributed.InMemoryDataset()
              dataset._set_merge_by_lineid()
646 647 648 649 650 651

        """
        self.dataset.set_merge_by_lineid(merge_size)
        self.merge_by_lineid = True
        self.parse_ins_id = True

652
    def _set_generate_unique_feasigns(self, generate_uni_feasigns, shard_num):
653 654 655 656
        self.dataset.set_generate_unique_feasigns(generate_uni_feasigns)
        self.gen_uni_feasigns = generate_uni_feasigns
        self.local_shard_num = shard_num

657 658
    def _generate_local_tables_unlock(self, table_id, fea_dim, read_thread_num,
                                      consume_thread_num, shard_num):
659 660 661 662 663
        self.dataset.generate_local_tables_unlock(
            table_id, fea_dim, read_thread_num, consume_thread_num, shard_num)

    def load_into_memory(self):
        """
664 665
        :api_attr: Static Graph
        
666 667 668 669 670
        Load data into memory

        Examples:
            .. code-block:: python

S
ShenLiang 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
                import paddle
                paddle.enable_static()
                
                dataset = paddle.distributed.InMemoryDataset()
                slots = ["slot1", "slot2", "slot3", "slot4"]
                slots_vars = []
                for slot in slots:
                    var = paddle.static.data(
                        name=slot, shape=[None, 1], dtype="int64", lod_level=1)
                    slots_vars.append(var)
                dataset.init(
                    batch_size=1,
                    thread_num=2,
                    input_type=1,
                    pipe_command="cat",
                    use_var=slots_vars)
                filelist = ["a.txt", "b.txt"]
                dataset.set_filelist(filelist)
                dataset.load_into_memory()
690 691 692 693 694 695
        """
        self._prepare_to_run()
        self.dataset.load_into_memory()

    def preload_into_memory(self, thread_num=None):
        """
696 697
        :api_attr: Static Graph

698 699 700 701 702 703 704 705
        Load data into memory in async mode

        Args:
            thread_num(int): preload thread num

        Examples:
            .. code-block:: python

S
ShenLiang 已提交
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
                import paddle
                paddle.enable_static()

                dataset = paddle.distributed.InMemoryDataset()
                slots = ["slot1", "slot2", "slot3", "slot4"]
                slots_vars = []
                for slot in slots:
                    var = paddle.static.data(
                        name=slot, shape=[None, 1], dtype="int64", lod_level=1)
                    slots_vars.append(var)
                dataset.init(
                    batch_size=1,
                    thread_num=2,
                    input_type=1,
                    pipe_command="cat",
                    use_var=slots_vars)
                filelist = ["a.txt", "b.txt"]
                dataset.set_filelist(filelist)
                dataset.preload_into_memory()
                dataset.wait_preload_done()
726 727 728 729 730 731 732 733 734 735
        """
        self._prepare_to_run()
        if thread_num is None:
            thread_num = self.thread_num
        self.dataset.set_preload_thread_num(thread_num)
        self.dataset.create_preload_readers()
        self.dataset.preload_into_memory()

    def wait_preload_done(self):
        """
736 737
        :api_attr: Static Graph

738 739 740 741 742
        Wait preload_into_memory done

        Examples:
            .. code-block:: python

S
ShenLiang 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
                import paddle
                paddle.enable_static()

                dataset = paddle.distributed.InMemoryDataset()
                slots = ["slot1", "slot2", "slot3", "slot4"]
                slots_vars = []
                for slot in slots:
                    var = paddle.static.data(
                        name=slot, shape=[None, 1], dtype="int64", lod_level=1)
                    slots_vars.append(var)
                dataset.init(
                    batch_size=1,
                    thread_num=2,
                    input_type=1,
                    pipe_command="cat",
                    use_var=slots_vars)
                filelist = ["a.txt", "b.txt"]
                dataset.set_filelist(filelist)
                dataset.preload_into_memory()
                dataset.wait_preload_done()
763 764 765 766 767 768
        """
        self.dataset.wait_preload_done()
        self.dataset.destroy_preload_readers()

    def local_shuffle(self):
        """
769 770
        :api_attr: Static Graph

771 772 773 774 775
        Local shuffle

        Examples:
            .. code-block:: python

S
ShenLiang 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
                import paddle
                paddle.enable_static()

                dataset = paddle.distributed.InMemoryDataset()
                slots = ["slot1", "slot2", "slot3", "slot4"]
                slots_vars = []
                for slot in slots:
                    var = paddle.static.data(
                        name=slot, shape=[None, 1], dtype="int64", lod_level=1)
                    slots_vars.append(var)
                dataset.init(
                    batch_size=1,
                    thread_num=2,
                    input_type=1,
                    pipe_command="cat",
                    use_var=slots_vars)
                filelist = ["a.txt", "b.txt"]
                dataset.set_filelist(filelist)
                dataset.load_into_memory()
                dataset.local_shuffle()
796 797 798 799 800
        """
        self.dataset.local_shuffle()

    def global_shuffle(self, fleet=None, thread_num=12):
        """
801 802
        :api_attr: Static Graph

803 804 805 806 807 808 809 810
        Global shuffle.
        Global shuffle can be used only in distributed mode. i.e. multiple
        processes on single machine or multiple machines training together.
        If you run in distributed mode, you should pass fleet instead of None.

        Examples:
            .. code-block:: python

S
ShenLiang 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
                import paddle
                paddle.enable_static()

                dataset = paddle.distributed.InMemoryDataset()
                slots = ["slot1", "slot2", "slot3", "slot4"]
                slots_vars = []
                for slot in slots:
                    var = paddle.static.data(
                        name=slot, shape=[None, 1], dtype="int64", lod_level=1)
                    slots_vars.append(var)
                dataset.init(
                    batch_size=1,
                    thread_num=2,
                    input_type=1,
                    pipe_command="cat",
                    use_var=slots_vars)
                filelist = ["a.txt", "b.txt"]
                dataset.set_filelist(filelist)
                dataset.load_into_memory()
                dataset.global_shuffle()
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867

        Args:
            fleet(Fleet): fleet singleton. Default None.
            thread_num(int): shuffle thread num. Default is 12.

        """
        trainer_num = 1
        if fleet is not None:
            fleet._role_maker.barrier_worker()
            trainer_num = fleet.worker_num()
        if self.fleet_send_batch_size is None:
            self.fleet_send_batch_size = 1024
        if self.fleet_send_sleep_seconds is None:
            self.fleet_send_sleep_seconds = 0
        self.dataset.register_client2client_msg_handler()
        self.dataset.set_trainer_num(trainer_num)
        self.dataset.set_fleet_send_batch_size(self.fleet_send_batch_size)
        self.dataset.set_fleet_send_sleep_seconds(self.fleet_send_sleep_seconds)
        if fleet is not None:
            fleet._role_maker.barrier_worker()
        self.dataset.global_shuffle(thread_num)
        if fleet is not None:
            fleet._role_maker.barrier_worker()
        if self.merge_by_lineid:
            self.dataset.merge_by_lineid()
        if fleet is not None:
            fleet._role_maker.barrier_worker()

    def release_memory(self):
        """
        :api_attr: Static Graph
        
        Release InMemoryDataset memory data, when data will not be used again.

        Examples:
            .. code-block:: python

S
ShenLiang 已提交
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
                import paddle
                paddle.enable_static()
                
                dataset = paddle.distributed.InMemoryDataset()
                slots = ["slot1", "slot2", "slot3", "slot4"]
                slots_vars = []
                for slot in slots:
                    var = paddle.static.data(
                        name=slot, shape=[None, 1], dtype="int64", lod_level=1)
                    slots_vars.append(var)
                dataset.init(
                    batch_size=1,
                    thread_num=2,
                    input_type=1,
                    pipe_command="cat",
                    use_var=slots_vars)
                filelist = ["a.txt", "b.txt"]
                dataset.set_filelist(filelist)
                dataset.load_into_memory()
                dataset.global_shuffle()
                exe = paddle.static.Executor(paddle.CPUPlace())
                startup_program = paddle.static.Program()
                main_program = paddle.static.Program()
                exe.run(startup_program)
                exe.train_from_dataset(main_program, dataset)
                dataset.release_memory()
894 895 896 897 898 899

        """
        self.dataset.release_memory()

    def get_memory_data_size(self, fleet=None):
        """
900 901
        :api_attr: Static Graph

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
        Get memory data size, user can call this function to know the num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of memory data.

        Examples:
            .. code-block:: python

S
ShenLiang 已提交
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
                import paddle
                paddle.enable_static()

                dataset = paddle.distributed.InMemoryDataset()
                slots = ["slot1", "slot2", "slot3", "slot4"]
                slots_vars = []
                for slot in slots:
                    var = paddle.static.data(
                        name=slot, shape=[None, 1], dtype="int64", lod_level=1)
                    slots_vars.append(var)
                dataset.init(
                    batch_size=1,
                    thread_num=2,
                    input_type=1,
                    pipe_command="cat",
                    use_var=slots_vars)
                filelist = ["a.txt", "b.txt"]
                dataset.set_filelist(filelist)
                dataset.load_into_memory()
                print dataset.get_memory_data_size()
937 938 939 940 941 942 943 944 945 946 947 948 949 950

        """
        import numpy as np
        local_data_size = self.dataset.get_memory_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
            fleet._role_maker.all_reduce_worker(local_data_size,
                                                global_data_size)
            return global_data_size[0]
        return local_data_size[0]

    def get_shuffle_data_size(self, fleet=None):
        """
951 952
        :api_attr: Static Graph

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
        Get shuffle data size, user can call this function to know the num
        of ins in all workers after local/global shuffle.

        Note:
            This function may cause bad performance to local shuffle,
            because it has barrier. It does not affect global shuffle.

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of shuffle data.

        Examples:
            .. code-block:: python

S
ShenLiang 已提交
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
                import paddle
                paddle.enable_static()
                
                dataset = paddle.distributed.InMemoryDataset()
                dataset = paddle.distributed.InMemoryDataset()
                slots = ["slot1", "slot2", "slot3", "slot4"]
                slots_vars = []
                for slot in slots:
                    var = paddle.static.data(
                        name=slot, shape=[None, 1], dtype="int64", lod_level=1)
                    slots_vars.append(var)
                dataset.init(
                    batch_size=1,
                    thread_num=2,
                    input_type=1,
                    pipe_command="cat",
                    use_var=slots_vars)
                filelist = ["a.txt", "b.txt"]
                dataset.set_filelist(filelist)
                dataset.load_into_memory()
                dataset.global_shuffle()
                print dataset.get_shuffle_data_size()
991 992 993 994 995 996 997 998 999 1000 1001 1002

        """
        import numpy as np
        local_data_size = self.dataset.get_shuffle_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
            fleet._role_maker.all_reduce_worker(local_data_size,
                                                global_data_size)
            return global_data_size[0]
        return local_data_size[0]

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
    def _set_fea_eval(self, record_candidate_size, fea_eval=True):
        """
        set fea eval mode for slots shuffle to debug the importance level of
        slots(features), fea_eval need to be set True for slots shuffle.
        
        Args:
            record_candidate_size(int): size of instances candidate to shuffle 
                                        one slot
            fea_eval(bool): whether enable fea eval mode to enable slots shuffle.
                            default is True.
            
        Examples:
            .. code-block:: python

            import paddle
S
ShenLiang 已提交
1018
            paddle.enable_static()
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
            dataset = paddle.distributed.InMemoryDataset()
            dataset._set_fea_eval(1000000, True)

        """
        if fea_eval:
            self.dataset.set_fea_eval(fea_eval, record_candidate_size)
        self.fea_eval = fea_eval

    def slots_shuffle(self, slots):
        """
        Slots Shuffle 
        Slots Shuffle is a shuffle method in slots level, which is usually used 
        in sparse feature with large scale of instances. To compare the metric, i.e.
        auc while doing slots shuffle on one or several slots with baseline to 
        evaluate the importance level of slots(features).
        
        Args:
            slots(list[string]): the set of slots(string) to do slots shuffle.

        Examples:
S
ShenLiang 已提交
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
            .. code-block:: python

                import paddle
                paddle.enable_static()
                
                dataset = paddle.distributed.InMemoryDataset()
                dataset._init_distributed_settings(fea_eval=True)
                slots = ["slot1", "slot2", "slot3", "slot4"]
                slots_vars = []
                for slot in slots:
                    var = paddle.static.data(
                        name=slot, shape=[None, 1], dtype="int64", lod_level=1)
                    slots_vars.append(var)
                dataset.init(
                    batch_size=1,
                    thread_num=2,
                    input_type=1,
                    pipe_command="cat",
                    use_var=slots_vars)
                filelist = ["a.txt", "b.txt"]
                dataset.set_filelist(filelist)
                dataset.load_into_memory()
                dataset.slots_shuffle(['slot1'])
1062 1063 1064 1065 1066
        """
        if self.fea_eval:
            slots_set = set(slots)
            self.dataset.slots_shuffle(slots_set)

1067 1068 1069

class QueueDataset(DatasetBase):
    """
1070 1071
    :api_attr: Static Graph

1072 1073 1074 1075 1076
    QueueDataset, it will process data streamly.

    Examples:
        .. code-block:: python

1077 1078
          import paddle
          dataset = paddle.distributed.QueueDataset()
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088

    """

    def __init__(self):
        """
        Initialize QueueDataset
        """
        super(QueueDataset, self).__init__()
        self.proto_desc.name = "MultiSlotDataFeed"

1089 1090
    def init(self, **kwargs):
        """
1091 1092
        :api_attr: Static Graph

1093 1094 1095 1096
        should be called only once in user's python scripts to initialize setings of dataset instance
        """
        super(QueueDataset, self).init(**kwargs)

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
    def _prepare_to_run(self):
        """
        Set data_feed_desc/thread num/filelist before run,
        user no need to call this function.
        """
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        if self.thread_num == 0:
            self.thread_num = 1
        self.dataset.set_thread_num(self.thread_num)
        self.dataset.set_filelist(self.filelist)
1108
        self.dataset.set_data_feed_desc(self._desc())
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
        self.dataset.create_readers()


class FileInstantDataset(DatasetBase):
    """
    FileInstantDataset, it will process data streamly.

    Examples:
        .. code-block:: python

1119 1120
          import paddle
          dataset = paddle.distributed.fleet.FileInstantDataset()
1121 1122 1123 1124 1125 1126 1127 1128 1129
    """

    def __init__(self):
        """
        Initialize FileInstantDataset
        """
        super(FileInstantDataset, self).__init__()
        self.proto_desc.name = "MultiSlotFileInstantDataFeed"

1130
    def init(self, **kwargs):
1131
        """
1132
        should be called only once in user's python scripts to initialize setings of dataset instance
1133
        """
1134
        super(FileInstantDataset, self).init(**kwargs)
1135 1136 1137 1138 1139 1140 1141 1142 1143


class BoxPSDataset(InMemoryDataset):
    """
    BoxPSDataset: derived from InMemoryDataset.

    Examples:
        .. code-block:: python

1144 1145
          import paddle
          dataset = paddle.distributed.fleet.BoxPSDataset()
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
    """

    def __init__(self):
        """
        Initialize BoxPSDataset
        """
        super(BoxPSDataset, self).__init__()
        self.boxps = core.BoxPS(self.dataset)
        self.proto_desc.name = "PaddleBoxDataFeed"

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
    def init(self, **kwargs):
        """
        should be called only once in user's python scripts to initialize setings of dataset instance
        """
        super(BoxPSDataset, self).init(**kwargs)

        rank_offset = kwargs.get("rank_offset", "")
        self._set_rank_offset(rank_offset)
        pv_batch_size = kwargs.get("pv_batch_size", 1)
        self._set_pv_batch_size(pv_batch_size)
        parse_logkey = kwargs.get("parse_logkey", False)
        self._set_parse_logkey(parse_logkey)
        merge_by_sid = kwargs.get("merge_by_sid", False)
        self._set_merge_by_sid(merge_by_sid)
        enable_pv_merge = kwargs.get("enable_pv_merge", False)
        self._set_enable_pv_merge(enable_pv_merge)

    def _set_rank_offset(self, rank_offset):
        """
        Set rank_offset for merge_pv. It set the message of Pv.

        Examples:
            .. code-block:: python

              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
              dataset._set_rank_offset("rank_offset")

        Args:
            rank_offset(str): rank_offset's name

        """
        self.proto_desc.rank_offset = rank_offset

    def _set_pv_batch_size(self, pv_batch_size):
        """
        Set pv batch size. It will be effective during enable_pv_merge

        Examples:
            .. code-block:: python

              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
              dataset._set_pv_batch_size(128)
        Args:
            pv_batch_size(int): pv batch size

        """
        self.proto_desc.pv_batch_size = pv_batch_size

    def _set_parse_logkey(self, parse_logkey):
        """
        Set if Dataset need to parse logkey

        Args:
            parse_content(bool): if parse logkey or not

        Examples:
            .. code-block:: python

              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
              dataset._set_parse_logkey(True)

        """
        self.parse_logkey = parse_logkey

    def _set_merge_by_sid(self, merge_by_sid):
        """
        Set if Dataset need to merge sid. If not, one ins means one Pv.

        Args:
            merge_by_sid(bool): if merge sid or not

        Examples:
            .. code-block:: python

              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
              dataset._set_merge_by_sid(True)

        """
        self.merge_by_sid = merge_by_sid

    def _set_enable_pv_merge(self, enable_pv_merge):
        """
        Set if Dataset need to merge pv.

        Args:
            enable_pv_merge(bool): if enable_pv_merge or not

        Examples:
            .. code-block:: python

              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
              dataset._set_enable_pv_merge(True)

        """
        self.enable_pv_merge = enable_pv_merge

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
    def set_date(self, date):
        """
        Workaround for date
        """
        year = int(date[:4])
        month = int(date[4:6])
        day = int(date[6:])
        self.boxps.set_date(year, month, day)

    def begin_pass(self):
        """
        Begin Pass
        Notify BoxPS to load sparse parameters of next pass to GPU Memory 

        Examples:
            .. code-block:: python

1274 1275
              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
              dataset.begin_pass()
        """
        self.boxps.begin_pass()

    def end_pass(self, need_save_delta):
        """
        End Pass
        Notify BoxPS that current pass ended 
        Examples:
            .. code-block:: python

1287 1288
              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
              dataset.end_pass(True)
        """
        self.boxps.end_pass(need_save_delta)

    def wait_preload_done(self):
        """
        Wait async preload done
        Wait Until Feed Pass Done
        Examples:
            .. code-block:: python

1300 1301
              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self.boxps.wait_feed_pass_done()

    def load_into_memory(self):
        """
        Load next pass into memory and notify boxps to fetch its emb from SSD
        Examples:
            .. code-block:: python

1315 1316
              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
	    """
        self._prepare_to_run()
        self.boxps.load_into_memory()

    def preload_into_memory(self):
        """
        Begin async preload next pass while current pass may be training
        Examples:
            .. code-block:: python

1330 1331
              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
        """
        self._prepare_to_run()
        self.boxps.preload_into_memory()

    def _dynamic_adjust_before_train(self, thread_num):
        if not self.is_user_set_queue_num:
            self.dataset.dynamic_adjust_channel_num(thread_num, True)
        self.dataset.dynamic_adjust_readers_num(thread_num)

    def _dynamic_adjust_after_train(self):
        pass

    def slots_shuffle(self, slots):
        """
        Slots Shuffle 
        Slots Shuffle is a shuffle method in slots level, which is usually used 
        in sparse feature with large scale of instances. To compare the metric, i.e.
        auc while doing slots shuffle on one or several slots with baseline to 
        evaluate the importance level of slots(features).
        
        Args:
            slots(list[string]): the set of slots(string) to do slots shuffle.

        Examples:
1359 1360
            import paddle
            dataset = paddle.distributed.fleet.BoxPSDataset()
1361 1362 1363 1364 1365 1366
            dataset.set_merge_by_lineid()
            #suppose there is a slot 0
            dataset.slots_shuffle(['0'])
        """
        slots_set = set(slots)
        self.boxps.slots_shuffle(slots_set)
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445

    def set_current_phase(self, current_phase):
        """
        Set current phase in train. It is useful for untest.
        current_phase : 1 for join, 0 for update.

        Examples:
            .. code-block:: python

              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.set_current_phase(1)

        """
        self.dataset.set_current_phase(current_phase)

    def get_pv_data_size(self):
        """
        Get memory data size of Pv, user can call this function to know the pv num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Returns:
            The size of memory pv data.

        Examples:
            .. code-block:: python

              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              print dataset.get_pv_data_size()

        """
        return self.dataset.get_pv_data_size()

    def preprocess_instance(self):
        """
        Merge pv instance and convey it from input_channel to input_pv_channel. 
        It will be effective when enable_pv_merge_ is True.

        Examples:
            .. code-block:: python

              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.preprocess_instance()

        """
        self.dataset.preprocess_instance()

    def postprocess_instance(self):
        """
        Divide pv instance and convey it to input_channel.

        Examples:
            .. code-block:: python

              import paddle
              dataset = paddle.distributed.fleet.BoxPSDataset()
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.preprocess_instance()
              exe.train_from_dataset(dataset)
              dataset.postprocess_instance()

        """
        self.dataset.postprocess_instance()