FunctionTest.h 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Function.h"
16 17
#include "paddle/math/Matrix.h"
#include "paddle/math/SparseMatrix.h"
18
#include "paddle/math/tests/TensorCheck.h"
H
hedaoyuan 已提交
19
#include "paddle/testing/TestUtil.h"
20 21 22

namespace paddle {

H
hedaoyuan 已提交
23 24
typedef std::shared_ptr<BufferArg> BufferArgPtr;

H
hedaoyuan 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
/**
 * \brief A class for comparing CPU and GPU implementations of Function.
 *
 *
 * Use case:
 *  // Initializes a test object, the corresponding cpu and gpu Function
 *  // are constructed according to FunctionName and FuncConfig.
 *  FunctionCompare test(FunctionName, FuncConfig);
 *  // Prepare inputs and outputs arguments.
 *  // Here the input and output can not contain real data,
 *  // only contains the argument type and shape.
 *  test.addInputs(input1);
 *  test.addInputs(input2);
 *  test.addOutputs(output1);
 *  test.addOutputs(output2);
 *  // Run.
 *  // Will according to the type and shape of arguments(inputs_/outputs_),
 *  // automatic initialization cpu and gpu function required arguments
 *  // (cpuInputs_/cpuOutputs_/gpuInputs_/gpuOutputs_).
 *  // Call the CPU and GPU Function calculation results.
 *  // Compares CPU and GPU calculation results for consistency.
 *  test.run();
 */
48 49 50
class FunctionCompare {
public:
  FunctionCompare(const std::string& name, const FuncConfig& config)
H
hedaoyuan 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
      : cpuFunc_(FunctionBase::funcRegistrar_.createByType(name + "-CPU")),
        gpuFunc_(FunctionBase::funcRegistrar_.createByType(name + "-GPU")) {
    cpuFunc_->init(config);
    gpuFunc_->init(config);
  }

  ~FunctionCompare() {}

  // input need only contains shape, do not contains data.
  void addInputs(const BufferArg& input) {
    size_t size =
        input.shape().getElements() * sizeOfValuType(input.valueType());
    cpuMemory_.emplace_back(std::make_shared<CpuMemoryHandle>(size));
    gpuMemory_.emplace_back(std::make_shared<GpuMemoryHandle>(size));

X
xutianbing 已提交
66 67 68 69
    cpuInputs_.emplace_back(std::make_shared<BufferArg>(
        cpuMemory_.back()->getBuf(), input.valueType(), input.shape()));
    gpuInputs_.emplace_back(std::make_shared<BufferArg>(
        gpuMemory_.back()->getBuf(), input.valueType(), input.shape()));
H
hedaoyuan 已提交
70 71 72
  }

  // output need only contains shape, do not contains data.
X
xutianbing 已提交
73
  void addOutputs(const BufferArg& output, ArgType argType = ASSIGN_TO) {
H
hedaoyuan 已提交
74 75 76 77 78
    size_t size =
        output.shape().getElements() * sizeOfValuType(output.valueType());
    cpuMemory_.emplace_back(std::make_shared<CpuMemoryHandle>(size));
    gpuMemory_.emplace_back(std::make_shared<GpuMemoryHandle>(size));

79 80 81 82 83 84 85 86 87 88
    cpuOutputs_.emplace_back(
        std::make_shared<BufferArg>(cpuMemory_.back()->getBuf(),
                                    output.valueType(),
                                    output.shape(),
                                    argType));
    gpuOutputs_.emplace_back(
        std::make_shared<BufferArg>(gpuMemory_.back()->getBuf(),
                                    output.valueType(),
                                    output.shape(),
                                    argType));
89 90
  }

91 92
  /// add and init output sparse matrix
  void addOutputs(const SparseMatrixArg& output, ArgType argType = ASSIGN_TO) {
93 94 95 96 97 98 99 100 101 102 103 104 105
    cpuSparse_ = std::make_shared<CpuSparseMatrix>(
        output.shape()[0],
        output.shape()[1],
        output.nnz(),
        static_cast<SparseValueType>(output.dataType()),
        static_cast<SparseFormat>(output.dataFormat()));

    gpuSparse_ = std::make_shared<GpuSparseMatrix>(
        output.shape()[0],
        output.shape()[1],
        output.nnz(),
        static_cast<SparseValueType>(output.dataType()),
        static_cast<SparseFormat>(output.dataFormat()));
106 107 108 109 110 111 112 113 114 115 116 117 118

    /// init sparse matrix
    hl_stream_t stream(HPPL_STREAM_1);
    cpuSparse_->randomizeUniform();
    gpuSparse_->copyFrom(*cpuSparse_, stream);
    hl_stream_synchronize(stream);

    cpuOutputs_.emplace_back(
        std::make_shared<SparseMatrixArg>(*cpuSparse_, argType));
    gpuOutputs_.emplace_back(
        std::make_shared<SparseMatrixArg>(*gpuSparse_, argType));
  }

H
hedaoyuan 已提交
119 120 121 122 123 124 125
  void addInputs(const SequenceArg& input) {
    size_t batchSize = input.shape()[0];
    size_t numSeqs = batchSize / 10 + 1;

    size_t sizeId = (numSeqs + 1) * sizeOfValuType(VALUE_TYPE_INT32);
    cpuMemory_.emplace_back(std::make_shared<CpuMemoryHandle>(sizeId));
    gpuMemory_.emplace_back(std::make_shared<GpuMemoryHandle>(sizeId));
H
hedaoyuan 已提交
126

H
hedaoyuan 已提交
127 128 129 130 131 132 133 134 135 136 137
    TensorShape seqsId({numSeqs + 1});
    // void* cpuBuffer = cpuMemory_.back()->getBuf();
    // void* gpuBuffer = gpuMemory_.back()->getBuf();

    size_t size =
        input.shape().getElements() * sizeOfValuType(input.valueType());
    cpuMemory_.emplace_back(std::make_shared<CpuMemoryHandle>(size));
    gpuMemory_.emplace_back(std::make_shared<GpuMemoryHandle>(size));

    // TODO: need be implemented.
  }
H
hedaoyuan 已提交
138

139
  void addInputs(const SparseMatrixArg& input) {
140 141 142 143 144 145 146 147 148 149 150 151 152
    cpuSparse_ = std::make_shared<CpuSparseMatrix>(
        input.shape()[0],
        input.shape()[1],
        input.nnz(),
        static_cast<SparseValueType>(input.dataType()),
        static_cast<SparseFormat>(input.dataFormat()));

    gpuSparse_ = std::make_shared<GpuSparseMatrix>(
        input.shape()[0],
        input.shape()[1],
        input.nnz(),
        static_cast<SparseValueType>(input.dataType()),
        static_cast<SparseFormat>(input.dataFormat()));
153 154 155 156 157 158 159 160 161 162 163

    /// init sparse matrix
    hl_stream_t stream(HPPL_STREAM_1);
    cpuSparse_->randomizeUniform();
    gpuSparse_->copyFrom(*cpuSparse_, stream);
    hl_stream_synchronize(stream);

    cpuInputs_.emplace_back(std::make_shared<SparseMatrixArg>(*cpuSparse_));
    gpuInputs_.emplace_back(std::make_shared<SparseMatrixArg>(*gpuSparse_));
  }

H
hedaoyuan 已提交
164 165
  void run() {
    // prepare cpu/gpu arguments
H
hedaoyuan 已提交
166
    initInputs();
H
hedaoyuan 已提交
167

168
    initOutputs();
H
hedaoyuan 已提交
169
    // function calculate
H
hedaoyuan 已提交
170 171 172 173 174 175 176
    auto callFunction = [](FunctionBase* function,
                           std::vector<BufferArgPtr>& inputs,
                           std::vector<BufferArgPtr>& outputs) {
      BufferArgs inArgs;
      BufferArgs outArgs;
      for (auto arg : inputs) {
        inArgs.addArg(*arg);
H
hedaoyuan 已提交
177
      }
H
hedaoyuan 已提交
178 179
      for (auto arg : outputs) {
        outArgs.addArg(*arg);
180
      }
H
hedaoyuan 已提交
181
      function->calc(inArgs, outArgs);
182 183
    };

H
hedaoyuan 已提交
184 185
    callFunction(cpuFunc_.get(), cpuInputs_, cpuOutputs_);
    callFunction(gpuFunc_.get(), gpuInputs_, gpuOutputs_);
186

187
    // check outputs
H
hedaoyuan 已提交
188
    compareOutputs();
189 190
  }

H
hedaoyuan 已提交
191
  std::shared_ptr<FunctionBase> getCpuFunction() const { return cpuFunc_; }
192

H
hedaoyuan 已提交
193
  std::shared_ptr<FunctionBase> getGpuFunction() const { return gpuFunc_; }
194

H
hedaoyuan 已提交
195
protected:
H
hedaoyuan 已提交
196 197
  void initInputs() {
    for (size_t i = 0; i < cpuInputs_.size(); i++) {
198 199 200 201
      if (cpuInputs_[i]->isSparseArg()) {
        continue;  /// sparse matrix already init
      }

H
hedaoyuan 已提交
202
      initArg(*cpuInputs_[i]);
H
hedaoyuan 已提交
203

H
hedaoyuan 已提交
204 205 206 207 208
      // TODO: Need a BufferCopy used to copy from one BufferArg to another.
      CpuVector cpuVector(cpuInputs_[i]->shape().getElements(),
                          (real*)cpuInputs_[i]->data());
      GpuVector gpuVector(gpuInputs_[i]->shape().getElements(),
                          (real*)gpuInputs_[i]->data());
H
hedaoyuan 已提交
209

H
hedaoyuan 已提交
210 211
      gpuVector.copyFrom(cpuVector);
    }
H
hedaoyuan 已提交
212 213
  }

214 215 216
  void initOutputs() {
    for (size_t i = 0; i < cpuOutputs_.size(); i++) {
      if (cpuOutputs_[i]->isSparseArg()) {
217
        continue;  /// sparse matrix already init
218 219 220 221 222 223 224 225 226 227 228 229 230 231
      }

      initArg(*cpuOutputs_[i]);

      // TODO: Need a BufferCopy used to copy from one BufferArg to another.
      CpuVector cpuVector(cpuOutputs_[i]->shape().getElements(),
                          (real*)cpuOutputs_[i]->data());
      GpuVector gpuVector(gpuOutputs_[i]->shape().getElements(),
                          (real*)gpuOutputs_[i]->data());

      gpuVector.copyFrom(cpuVector);
    }
  }

H
hedaoyuan 已提交
232 233 234
  void compareOutputs() {
    for (size_t i = 0; i < cpuOutputs_.size(); i++) {
      // TODO, Need a BufferCheck used to compare the two buffers.
235 236 237 238 239
      const auto cpu = cpuOutputs_[i];
      const auto gpu = gpuOutputs_[i];
      CHECK_EQ(cpu->numElements(), gpu->numElements());
      CpuVector cpuVector(cpu->numElements(), (real*)cpu->data());
      GpuVector gpuVector(gpu->numElements(), (real*)gpu->data());
H
hedaoyuan 已提交
240 241
      autotest::TensorCheckErr(cpuVector, gpuVector);
    }
H
hedaoyuan 已提交
242 243 244 245 246 247 248 249 250 251
  }

  // only init cpu argument, gpu argument copy from cpu argument.
  void initArg(BufferArg& arg) {
    CpuVector vector(arg.shape().getElements(), (real*)arg.data());
    vector.uniform(0.001, 1);
  }

  void initArg(SequenceIdArg& arg, size_t batchSize) {
    size_t numSeqs = arg.numSeqs();
H
hedaoyuan 已提交
252
    int* buf = reinterpret_cast<int*>(arg.data());
H
hedaoyuan 已提交
253 254
    int pos = 0;
    size_t maxLen = 2 * batchSize / numSeqs;
H
hedaoyuan 已提交
255
    for (int i = 0; i < (int)numSeqs; ++i) {
H
hedaoyuan 已提交
256 257 258 259 260 261 262 263 264 265
      int len = uniformRandom(
                    std::min<int64_t>(maxLen, batchSize - pos - numSeqs + i)) +
                1;
      buf[i] = pos;
      pos += len;
      VLOG(1) << " len=" << len;
    }
    buf[numSeqs] = batchSize;
  }

266
protected:
H
hedaoyuan 已提交
267 268
  std::shared_ptr<FunctionBase> cpuFunc_;
  std::shared_ptr<FunctionBase> gpuFunc_;
H
hedaoyuan 已提交
269 270
  std::vector<CpuMemHandlePtr> cpuMemory_;
  std::vector<GpuMemHandlePtr> gpuMemory_;
H
hedaoyuan 已提交
271 272 273 274
  std::vector<BufferArgPtr> cpuInputs_;
  std::vector<BufferArgPtr> cpuOutputs_;
  std::vector<BufferArgPtr> gpuInputs_;
  std::vector<BufferArgPtr> gpuOutputs_;
275 276
  std::shared_ptr<CpuSparseMatrix> cpuSparse_;
  std::shared_ptr<GpuSparseMatrix> gpuSparse_;
277 278 279
};

}  // namespace paddle