FunctionTest.h 10.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Function.h"
16 17
#include "paddle/math/Matrix.h"
#include "paddle/math/SparseMatrix.h"
18 19
#include "paddle/math/Vector.h"
#include "paddle/math/tests/TensorCheck.h"
H
hedaoyuan 已提交
20
#include "paddle/testing/TestUtil.h"
21 22 23

namespace paddle {

H
hedaoyuan 已提交
24 25
typedef std::shared_ptr<BufferArg> BufferArgPtr;

H
hedaoyuan 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
/**
 * \brief A class for comparing CPU and GPU implementations of Function.
 *
 *
 * Use case:
 *  // Initializes a test object, the corresponding cpu and gpu Function
 *  // are constructed according to FunctionName and FuncConfig.
 *  FunctionCompare test(FunctionName, FuncConfig);
 *  // Prepare inputs and outputs arguments.
 *  // Here the input and output can not contain real data,
 *  // only contains the argument type and shape.
 *  test.addInputs(input1);
 *  test.addInputs(input2);
 *  test.addOutputs(output1);
 *  test.addOutputs(output2);
 *  // Run.
 *  // Will according to the type and shape of arguments(inputs_/outputs_),
 *  // automatic initialization cpu and gpu function required arguments
 *  // (cpuInputs_/cpuOutputs_/gpuInputs_/gpuOutputs_).
 *  // Call the CPU and GPU Function calculation results.
 *  // Compares CPU and GPU calculation results for consistency.
 *  test.run();
 */
49 50 51
class FunctionCompare {
public:
  FunctionCompare(const std::string& name, const FuncConfig& config)
H
hedaoyuan 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
      : cpuFunc_(FunctionBase::funcRegistrar_.createByType(name + "-CPU")),
        gpuFunc_(FunctionBase::funcRegistrar_.createByType(name + "-GPU")) {
    cpuFunc_->init(config);
    gpuFunc_->init(config);
  }

  ~FunctionCompare() {}

  // input need only contains shape, do not contains data.
  void addInputs(const BufferArg& input) {
    size_t size =
        input.shape().getElements() * sizeOfValuType(input.valueType());
    cpuMemory_.emplace_back(std::make_shared<CpuMemoryHandle>(size));
    gpuMemory_.emplace_back(std::make_shared<GpuMemoryHandle>(size));

X
xutianbing 已提交
67 68 69 70
    cpuInputs_.emplace_back(std::make_shared<BufferArg>(
        cpuMemory_.back()->getBuf(), input.valueType(), input.shape()));
    gpuInputs_.emplace_back(std::make_shared<BufferArg>(
        gpuMemory_.back()->getBuf(), input.valueType(), input.shape()));
H
hedaoyuan 已提交
71 72 73
  }

  // output need only contains shape, do not contains data.
X
xutianbing 已提交
74
  void addOutputs(const BufferArg& output, ArgType argType = ADD_TO) {
H
hedaoyuan 已提交
75 76 77 78 79
    size_t size =
        output.shape().getElements() * sizeOfValuType(output.valueType());
    cpuMemory_.emplace_back(std::make_shared<CpuMemoryHandle>(size));
    gpuMemory_.emplace_back(std::make_shared<GpuMemoryHandle>(size));

80 81 82 83
    cpuOutputs_.emplace_back(std::make_shared<BufferArg>(
        cpuMemory_.back()->getBuf(),
        output.valueType(),
        output.shape(),
X
xutianbing 已提交
84 85
        // todo(tianbing), argType = output.getArgType(), but default ADD_TO
        argType));
86 87 88 89
    gpuOutputs_.emplace_back(std::make_shared<BufferArg>(
        gpuMemory_.back()->getBuf(),
        output.valueType(),
        output.shape(),
X
xutianbing 已提交
90 91
        // todo(tianbing), argType = output.getArgType(), but default ADD_TO
        argType));
92 93
  }

94 95 96 97 98 99
  /// add and init output sparse matrix
  void addOutputs(const SparseMatrixArg& output, ArgType argType = ASSIGN_TO) {
    cpuSparse_ = std::make_shared<CpuSparseMatrix>(output.shape()[0],
                                                   output.shape()[1],
                                                   output.nnz(),
                                                   output.dataType(),
X
xutianbing 已提交
100
                                                   output.dataFormat());
101 102 103 104 105

    gpuSparse_ = std::make_shared<GpuSparseMatrix>(output.shape()[0],
                                                   output.shape()[1],
                                                   output.nnz(),
                                                   output.dataType(),
X
xutianbing 已提交
106
                                                   output.dataFormat());
107 108 109 110 111 112 113 114 115 116 117 118 119

    /// init sparse matrix
    hl_stream_t stream(HPPL_STREAM_1);
    cpuSparse_->randomizeUniform();
    gpuSparse_->copyFrom(*cpuSparse_, stream);
    hl_stream_synchronize(stream);

    cpuOutputs_.emplace_back(
        std::make_shared<SparseMatrixArg>(*cpuSparse_, argType));
    gpuOutputs_.emplace_back(
        std::make_shared<SparseMatrixArg>(*gpuSparse_, argType));
  }

H
hedaoyuan 已提交
120 121 122 123 124 125 126
  void addInputs(const SequenceArg& input) {
    size_t batchSize = input.shape()[0];
    size_t numSeqs = batchSize / 10 + 1;

    size_t sizeId = (numSeqs + 1) * sizeOfValuType(VALUE_TYPE_INT32);
    cpuMemory_.emplace_back(std::make_shared<CpuMemoryHandle>(sizeId));
    gpuMemory_.emplace_back(std::make_shared<GpuMemoryHandle>(sizeId));
H
hedaoyuan 已提交
127

H
hedaoyuan 已提交
128 129 130 131 132 133 134 135 136 137 138
    TensorShape seqsId({numSeqs + 1});
    // void* cpuBuffer = cpuMemory_.back()->getBuf();
    // void* gpuBuffer = gpuMemory_.back()->getBuf();

    size_t size =
        input.shape().getElements() * sizeOfValuType(input.valueType());
    cpuMemory_.emplace_back(std::make_shared<CpuMemoryHandle>(size));
    gpuMemory_.emplace_back(std::make_shared<GpuMemoryHandle>(size));

    // TODO: need be implemented.
  }
H
hedaoyuan 已提交
139

140 141 142 143 144
  void addInputs(const SparseMatrixArg& input) {
    cpuSparse_ = std::make_shared<CpuSparseMatrix>(input.shape()[0],
                                                   input.shape()[1],
                                                   input.nnz(),
                                                   input.dataType(),
X
xutianbing 已提交
145
                                                   input.dataFormat());
146 147 148 149 150

    gpuSparse_ = std::make_shared<GpuSparseMatrix>(input.shape()[0],
                                                   input.shape()[1],
                                                   input.nnz(),
                                                   input.dataType(),
X
xutianbing 已提交
151
                                                   input.dataFormat());
152 153 154 155 156 157 158 159 160 161 162

    /// init sparse matrix
    hl_stream_t stream(HPPL_STREAM_1);
    cpuSparse_->randomizeUniform();
    gpuSparse_->copyFrom(*cpuSparse_, stream);
    hl_stream_synchronize(stream);

    cpuInputs_.emplace_back(std::make_shared<SparseMatrixArg>(*cpuSparse_));
    gpuInputs_.emplace_back(std::make_shared<SparseMatrixArg>(*gpuSparse_));
  }

H
hedaoyuan 已提交
163 164
  void run() {
    // prepare cpu/gpu arguments
H
hedaoyuan 已提交
165
    initInputs();
H
hedaoyuan 已提交
166

167
    initOutputs();
H
hedaoyuan 已提交
168
    // function calculate
H
hedaoyuan 已提交
169 170 171 172 173 174 175
    auto callFunction = [](FunctionBase* function,
                           std::vector<BufferArgPtr>& inputs,
                           std::vector<BufferArgPtr>& outputs) {
      BufferArgs inArgs;
      BufferArgs outArgs;
      for (auto arg : inputs) {
        inArgs.addArg(*arg);
H
hedaoyuan 已提交
176
      }
H
hedaoyuan 已提交
177 178
      for (auto arg : outputs) {
        outArgs.addArg(*arg);
179
      }
H
hedaoyuan 已提交
180
      function->calc(inArgs, outArgs);
181 182
    };

H
hedaoyuan 已提交
183 184
    callFunction(cpuFunc_.get(), cpuInputs_, cpuOutputs_);
    callFunction(gpuFunc_.get(), gpuInputs_, gpuOutputs_);
185

186
    // check outputs
H
hedaoyuan 已提交
187
    compareOutputs();
188 189
  }

H
hedaoyuan 已提交
190
  std::shared_ptr<FunctionBase> getCpuFunction() const { return cpuFunc_; }
191

H
hedaoyuan 已提交
192
  std::shared_ptr<FunctionBase> getGpuFunction() const { return gpuFunc_; }
193

H
hedaoyuan 已提交
194
protected:
H
hedaoyuan 已提交
195 196
  void initInputs() {
    for (size_t i = 0; i < cpuInputs_.size(); i++) {
197 198 199 200
      if (cpuInputs_[i]->isSparseArg()) {
        continue;  /// sparse matrix already init
      }

H
hedaoyuan 已提交
201
      initArg(*cpuInputs_[i]);
H
hedaoyuan 已提交
202

H
hedaoyuan 已提交
203 204 205 206 207
      // TODO: Need a BufferCopy used to copy from one BufferArg to another.
      CpuVector cpuVector(cpuInputs_[i]->shape().getElements(),
                          (real*)cpuInputs_[i]->data());
      GpuVector gpuVector(gpuInputs_[i]->shape().getElements(),
                          (real*)gpuInputs_[i]->data());
H
hedaoyuan 已提交
208

H
hedaoyuan 已提交
209 210
      gpuVector.copyFrom(cpuVector);
    }
H
hedaoyuan 已提交
211 212
  }

213 214 215
  void initOutputs() {
    for (size_t i = 0; i < cpuOutputs_.size(); i++) {
      if (cpuOutputs_[i]->isSparseArg()) {
216
        continue;  /// sparse matrix already init
217 218 219 220 221 222 223 224 225 226 227 228 229 230
      }

      initArg(*cpuOutputs_[i]);

      // TODO: Need a BufferCopy used to copy from one BufferArg to another.
      CpuVector cpuVector(cpuOutputs_[i]->shape().getElements(),
                          (real*)cpuOutputs_[i]->data());
      GpuVector gpuVector(gpuOutputs_[i]->shape().getElements(),
                          (real*)gpuOutputs_[i]->data());

      gpuVector.copyFrom(cpuVector);
    }
  }

H
hedaoyuan 已提交
231 232 233
  void compareOutputs() {
    for (size_t i = 0; i < cpuOutputs_.size(); i++) {
      // TODO, Need a BufferCheck used to compare the two buffers.
234 235 236 237 238
      const auto cpu = cpuOutputs_[i];
      const auto gpu = gpuOutputs_[i];
      CHECK_EQ(cpu->numElements(), gpu->numElements());
      CpuVector cpuVector(cpu->numElements(), (real*)cpu->data());
      GpuVector gpuVector(gpu->numElements(), (real*)gpu->data());
H
hedaoyuan 已提交
239 240
      autotest::TensorCheckErr(cpuVector, gpuVector);
    }
H
hedaoyuan 已提交
241 242 243 244 245 246 247 248 249 250
  }

  // only init cpu argument, gpu argument copy from cpu argument.
  void initArg(BufferArg& arg) {
    CpuVector vector(arg.shape().getElements(), (real*)arg.data());
    vector.uniform(0.001, 1);
  }

  void initArg(SequenceIdArg& arg, size_t batchSize) {
    size_t numSeqs = arg.numSeqs();
H
hedaoyuan 已提交
251
    int* buf = reinterpret_cast<int*>(arg.data());
H
hedaoyuan 已提交
252 253
    int pos = 0;
    size_t maxLen = 2 * batchSize / numSeqs;
H
hedaoyuan 已提交
254
    for (int i = 0; i < (int)numSeqs; ++i) {
H
hedaoyuan 已提交
255 256 257 258 259 260 261 262 263 264
      int len = uniformRandom(
                    std::min<int64_t>(maxLen, batchSize - pos - numSeqs + i)) +
                1;
      buf[i] = pos;
      pos += len;
      VLOG(1) << " len=" << len;
    }
    buf[numSeqs] = batchSize;
  }

265
protected:
H
hedaoyuan 已提交
266 267
  std::shared_ptr<FunctionBase> cpuFunc_;
  std::shared_ptr<FunctionBase> gpuFunc_;
H
hedaoyuan 已提交
268 269
  std::vector<CpuMemHandlePtr> cpuMemory_;
  std::vector<GpuMemHandlePtr> gpuMemory_;
H
hedaoyuan 已提交
270 271 272 273
  std::vector<BufferArgPtr> cpuInputs_;
  std::vector<BufferArgPtr> cpuOutputs_;
  std::vector<BufferArgPtr> gpuInputs_;
  std::vector<BufferArgPtr> gpuOutputs_;
274 275
  std::shared_ptr<CpuSparseMatrix> cpuSparse_;
  std::shared_ptr<GpuSparseMatrix> gpuSparse_;
276 277 278
};

}  // namespace paddle