test_edit_distance_op.py 6.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
F
fengjiayi 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
F
fengjiayi 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
F
fengjiayi 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yibing Liu 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
Z
zhiboniu 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
import paddle


def python_edit_distance(input,
                         label,
                         input_length=None,
                         label_length=None,
                         normalized=True,
                         ignored_tokens=None):
    return paddle.nn.functional.loss.edit_distance(
        input,
        label,
        normalized=normalized,
        ignored_tokens=ignored_tokens,
        input_length=input_length,
        label_length=label_length)
Y
Yibing Liu 已提交
36 37 38 39 40


def Levenshtein(hyp, ref):
    """ Compute the Levenshtein distance between two strings.

41
    :param hyp: hypothesis string in index
Y
Yibing Liu 已提交
42
    :type hyp: list
43
    :param ref: reference string in index
Y
Yibing Liu 已提交
44 45 46 47 48 49 50 51 52
    :type ref: list
    """
    m = len(hyp)
    n = len(ref)
    if m == 0:
        return n
    if n == 0:
        return m

53
    dist = np.zeros((m + 1, n + 1)).astype("float32")
Y
Yibing Liu 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    for i in range(0, m + 1):
        dist[i][0] = i
    for j in range(0, n + 1):
        dist[0][j] = j

    for i in range(1, m + 1):
        for j in range(1, n + 1):
            cost = 0 if hyp[i - 1] == ref[j - 1] else 1
            deletion = dist[i - 1][j] + 1
            insertion = dist[i][j - 1] + 1
            substitution = dist[i - 1][j - 1] + cost
            dist[i][j] = min(deletion, insertion, substitution)
    return dist[m][n]


69
class TestEditDistanceOp(OpTest):
70

71 72
    def setUp(self):
        self.op_type = "edit_distance"
Z
zhiboniu 已提交
73
        self.python_api = python_edit_distance
74
        normalized = False
75 76
        x1 = np.array([[12, 3, 5, 8, 2]]).astype("int64")
        x2 = np.array([[12, 4, 7, 8]]).astype("int64")
77 78
        x1 = np.transpose(x1)
        x2 = np.transpose(x2)
79 80
        self.x1_lod = [1, 4]
        self.x2_lod = [3, 1]
81

82
        num_strs = len(self.x1_lod)
83
        distance = np.zeros((num_strs, 1)).astype("float32")
84
        sequence_num = np.array(2).astype("int64")
85 86 87

        x1_offset = 0
        x2_offset = 0
88 89
        for i in range(0, num_strs):
            distance[i] = Levenshtein(
90 91 92 93
                hyp=x1[x1_offset:(x1_offset + self.x1_lod[i])],
                ref=x2[x2_offset:(x2_offset + self.x2_lod[i])])
            x1_offset += self.x1_lod[i]
            x2_offset += self.x2_lod[i]
94
            if normalized is True:
95
                len_ref = self.x2_lod[i]
96
                distance[i] = distance[i] / len_ref
97

98
        self.attrs = {'normalized': normalized}
99
        self.inputs = {'Hyps': (x1, [self.x1_lod]), 'Refs': (x2, [self.x2_lod])}
100
        self.outputs = {'Out': distance, 'SequenceNum': sequence_num}
101 102

    def test_check_output(self):
Z
zhiboniu 已提交
103
        self.check_output(check_eager=True)
104 105


106
class TestEditDistanceOpNormalizedCase0(OpTest):
107

108 109 110
    def reset_config(self):
        pass

111 112 113
    def post_config(self):
        pass

Y
Yibing Liu 已提交
114
    def setUp(self):
115
        self.op_type = "edit_distance"
Z
zhiboniu 已提交
116
        self.python_api = python_edit_distance
Y
Yibing Liu 已提交
117
        normalized = True
118 119
        self.x1 = np.array([[10, 3, 6, 5, 8, 2]]).astype("int64")
        self.x2 = np.array([[10, 4, 6, 7, 8]]).astype("int64")
120 121
        self.x1_lod = [3, 0, 3]
        self.x2_lod = [2, 1, 2]
122 123 124
        self.x1 = np.transpose(self.x1)
        self.x2 = np.transpose(self.x2)

125
        self.reset_config()
Y
Yibing Liu 已提交
126

127
        num_strs = len(self.x1_lod)
128
        distance = np.zeros((num_strs, 1)).astype("float32")
129
        sequence_num = np.array(num_strs).astype("int64")
130 131 132

        x1_offset = 0
        x2_offset = 0
133 134
        for i in range(0, num_strs):
            distance[i] = Levenshtein(
135 136
                hyp=self.x1[x1_offset:(x1_offset + self.x1_lod[i])],
                ref=self.x2[x2_offset:(x2_offset + self.x2_lod[i])])
137 138
            x1_offset += self.x1_lod[i]
            x2_offset += self.x2_lod[i]
139
            if normalized is True:
140
                len_ref = self.x2_lod[i]
141
                distance[i] = distance[i] / len_ref
142

Y
Yibing Liu 已提交
143
        self.attrs = {'normalized': normalized}
144 145 146 147
        self.inputs = {
            'Hyps': (self.x1, [self.x1_lod]),
            'Refs': (self.x2, [self.x2_lod])
        }
148
        self.outputs = {'Out': distance, 'SequenceNum': sequence_num}
Y
Yibing Liu 已提交
149

150 151
        self.post_config()

Y
Yibing Liu 已提交
152
    def test_check_output(self):
Z
zhiboniu 已提交
153
        self.check_output(check_eager=True)
Y
Yibing Liu 已提交
154 155


156
class TestEditDistanceOpNormalizedCase1(TestEditDistanceOpNormalizedCase0):
157

158 159 160 161 162 163
    def reset_config(self):
        self.x1_lod = [0, 6, 0]
        self.x2_lod = [2, 1, 2]


class TestEditDistanceOpNormalizedCase2(TestEditDistanceOpNormalizedCase0):
164

165 166 167 168 169
    def reset_config(self):
        self.x1_lod = [0, 0, 6]
        self.x2_lod = [2, 2, 1]


170
class TestEditDistanceOpNormalizedTensor(OpTest):
171

172 173 174 175 176 177 178 179
    def reset_config(self):
        self.x1 = np.array([[10, 3, 0, 0], [6, 5, 8, 2]], dtype=np.int64)
        self.x2 = np.array([[10, 4, 0], [6, 7, 8]], dtype=np.int64)
        self.x1_lod = np.array([2, 4], dtype=np.int64)
        self.x2_lod = np.array([2, 3], dtype=np.int64)

    def setUp(self):
        self.op_type = "edit_distance"
Z
zhiboniu 已提交
180
        self.python_api = python_edit_distance
181 182 183 184 185 186 187 188 189
        normalized = True

        self.reset_config()

        num_strs = len(self.x1_lod)
        distance = np.zeros((num_strs, 1)).astype("float32")
        sequence_num = np.array(num_strs).astype("int64")

        for i in range(0, num_strs):
190 191
            distance[i] = Levenshtein(hyp=self.x1[i][0:self.x1_lod[i]],
                                      ref=self.x2[i][0:self.x2_lod[i]])
192 193 194 195 196 197 198 199 200 201 202 203 204 205
            if normalized is True:
                len_ref = self.x2_lod[i]
                distance[i] = distance[i] / len_ref

        self.attrs = {'normalized': normalized}
        self.inputs = {
            'Hyps': self.x1,
            'Refs': self.x2,
            'HypsLength': self.x1_lod,
            'RefsLength': self.x2_lod
        }
        self.outputs = {'Out': distance, 'SequenceNum': sequence_num}

    def test_check_output(self):
Z
zhiboniu 已提交
206
        self.check_output(check_eager=True)
207 208


Y
Yibing Liu 已提交
209
if __name__ == '__main__':
Z
zhiboniu 已提交
210
    paddle.enable_static()
Y
Yibing Liu 已提交
211
    unittest.main()