softmax_mkldnn_op.cc 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <iostream>
16
#include <numeric>
17 18
#include "mkldnn.hpp"
#include "paddle/fluid/operators/softmax_op.h"
J
Jacek Czaja 已提交
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNMemDesc;

28 29 30 31 32 33
using dnnl::memory;  // Note: paddle has also "memory" namespace
using dnnl::primitive;
using dnnl::prop_kind;
using dnnl::softmax_backward;
using dnnl::softmax_forward;
using dnnl::stream;
J
Jacek Czaja 已提交
34 35
using platform::to_void_cast;

36
template <typename T>
37 38 39
class SoftmaxMKLDNNHandler
    : public platform::MKLDNNHandlerT<T, mkldnn::softmax_forward,
                                      mkldnn::softmax_backward> {
J
Jacek Czaja 已提交
40
 public:
41 42 43 44 45
  SoftmaxMKLDNNHandler(const MKLDNNDeviceContext& dev_ctx,
                       const mkldnn::engine mkldnn_engine,
                       platform::Place cpu_place, const Tensor* input,
                       Tensor* output, const int axis,
                       const std::string uniq_name)
46 47
      : platform::MKLDNNHandlerT<T, mkldnn::softmax_forward,
                                 mkldnn::softmax_backward>(
48
            dev_ctx, mkldnn_engine, cpu_place,
49
            // Softmax may be inplace then uniq_name is no longer unique
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
            platform::CreateKey(framework::vectorize(input->dims()), axis,
                                uniq_name)) {
    if (!this->isCached()) {
      PADDLE_ENFORCE_EQ(
          input->dims(), output->dims(),
          platform::errors::InvalidArgument(
              "The shape of input and output tensor must be identical."));

      auto softmax_tz = framework::vectorize(input->dims());
      auto md = memory::desc(softmax_tz, platform::MKLDNNGetDataType<T>(),
                             input->format());

      this->AcquireForwardPrimitiveDescriptor(prop_kind::forward_scoring, md,
                                              axis);
    }
65
  }
J
Jacek Czaja 已提交
66

A
Adam 已提交
67
  SoftmaxMKLDNNHandler(const std::vector<int64_t>& dims,
68
                       const MKLDNNMemoryFormat fmt,
69
                       const MKLDNNMemoryFormat diff_fmt, const int& axis,
70
                       const platform::MKLDNNDeviceContext& dev_ctx,
71
                       platform::Place cpu_place, const std::string& uniq_name)
72 73 74
      : platform::MKLDNNHandlerT<T, mkldnn::softmax_forward,
                                 mkldnn::softmax_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
75
            platform::CreateKey(dims, axis, uniq_name)) {
76 77 78 79 80 81
    auto data_softmax_md =
        mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);
    auto diff_softmax_md =
        mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), diff_fmt);

    this->AcquireBackwardPrimitiveDescriptor(diff_softmax_md, data_softmax_md,
82
                                             axis);
83
  }
J
Jacek Czaja 已提交
84
};
85 86 87 88 89 90

template <typename T>
class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
91 92
    const auto& mkldnn_engine = dev_ctx.GetEngine();

93 94
    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");
F
fengjiayi 已提交
95

96
    const int axis = CanonicalAxis(ctx.Attr<int>("axis"), input->dims().size());
97

98 99
    SoftmaxMKLDNNHandler<T> handler(dev_ctx, mkldnn_engine, ctx.GetPlace(),
                                    input, output, axis, ctx.OutputName("Out"));
100

101
    auto softmax_src_memory_p = handler.AcquireSrcMemory(input);
102
    // For Inplace src and and dst are the same memory object
103
    auto softmax_dst_memory_p = input->IsSharedBufferWith(*output)
104 105
                                    ? softmax_src_memory_p
                                    : handler.AcquireDstMemory(output);
106

107 108
    auto softmax_p = handler.AcquireForwardPrimitive();

A
Adam 已提交
109
    mkldnn::stream astream(dev_ctx.GetEngine());
110 111
    softmax_p->execute(astream, {{DNNL_ARG_SRC, *softmax_src_memory_p},
                                 {DNNL_ARG_DST, *softmax_dst_memory_p}});
A
Adam 已提交
112
    astream.wait();
J
Jacek Czaja 已提交
113 114 115

    const bool is_test = ctx.Attr<bool>("is_test");
    if (!is_test) {
116
      T* output_data = output->mutable_data<T>(ctx.GetPlace());
A
Adam 已提交
117
      std::for_each(output_data, &output_data[output->numel()], [](T& val) {
118 119
        val = std::max(val, static_cast<T>(exp(-64)));
      });
J
Jacek Czaja 已提交
120
    }
121 122 123 124

    output->set_layout(framework::DataLayout::kMKLDNN);
    // Softmax output format is the same as input one
    output->set_format(input->format());
125 126 127
  }
};

J
Jacek Czaja 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140
template <typename T>
class SoftmaxMKLDNNGradKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const Tensor* output = ctx.Input<Tensor>("Out");
    auto* dout = ctx.template Input<Tensor>(framework::GradVarName("Out"));
    auto* dx =
        ctx.template Output<framework::Tensor>(framework::GradVarName("X"));

F
fengjiayi 已提交
141 142 143 144 145
    PADDLE_ENFORCE_EQ(
        dout->dims(), dx->dims(),
        "The shape of softmax_grad's input and output must be identical.");

    auto dims = dout->dims();  // input and output share the same shape
146
    const int axis = CanonicalAxis(ctx.Attr<int>("axis"), dims.size());
F
fengjiayi 已提交
147

A
Adam 已提交
148
    auto softmax_tz = paddle::framework::vectorize<int64_t>(dims);
F
fengjiayi 已提交
149

150 151
    SoftmaxMKLDNNHandler<T> handler(softmax_tz, output->format(),
                                    dout->format(), axis, dev_ctx,
H
hong 已提交
152
                                    ctx.GetPlace(), ctx.InputName("Out"));
153

154 155 156
    auto dst_memory_p = handler.AcquireDstMemory(output);
    auto diff_dst_memory_p = handler.AcquireDiffDstMemory(dout);
    auto diff_src_memory_p = handler.AcquireDiffSrcMemory(dx);
J
Jacek Czaja 已提交
157

A
Adam 已提交
158
    auto softmax_bwd_p = handler.AcquireBackwardPrimitive();
J
Jacek Czaja 已提交
159

A
Adam 已提交
160 161 162 163 164 165
    mkldnn::stream astream(dev_ctx.GetEngine());
    softmax_bwd_p->execute(astream,
                           {{MKLDNN_ARG_DST, *dst_memory_p},
                            {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_p},
                            {MKLDNN_ARG_DIFF_SRC, *diff_src_memory_p}});
    astream.wait();
166 167 168

    dx->set_layout(framework::DataLayout::kMKLDNN);
    dx->set_format(dout->format());
J
Jacek Czaja 已提交
169 170
  }
};
171 172 173 174 175 176 177
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(softmax, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::SoftmaxMKLDNNKernel<float>);
J
Jacek Czaja 已提交
178 179
REGISTER_OP_KERNEL(softmax_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::SoftmaxMKLDNNGradKernel<float>);