softmax_mkldnn_op.cc 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <iostream>
16
#include <numeric>
17 18
#include "mkldnn.hpp"
#include "paddle/fluid/operators/softmax_op.h"
J
Jacek Czaja 已提交
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
20 21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNMemDesc;

using mkldnn::memory;  // Note: paddle has also "memory" namespace
using mkldnn::primitive;
using mkldnn::prop_kind;
F
fengjiayi 已提交
31 32
using mkldnn::softmax_backward;
using mkldnn::softmax_forward;
33
using mkldnn::stream;
J
Jacek Czaja 已提交
34 35
using platform::to_void_cast;

36
template <typename T>
37 38 39
class SoftmaxMKLDNNHandler
    : public platform::MKLDNNHandlerT<T, mkldnn::softmax_forward,
                                      mkldnn::softmax_backward> {
J
Jacek Czaja 已提交
40
 public:
A
Adam 已提交
41
  SoftmaxMKLDNNHandler(const std::vector<int64_t>& dims,
42
                       const MKLDNNMemoryFormat fmt, const int& axis,
43
                       const platform::MKLDNNDeviceContext& dev_ctx,
44
                       platform::Place cpu_place, const std::string& uniq_name)
45 46 47
      : platform::MKLDNNHandlerT<T, mkldnn::softmax_forward,
                                 mkldnn::softmax_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
48 49
            // Softmax may be inplace then uniq_name is no longer unique
            platform::CreateKey(dims, axis, uniq_name)) {
50 51 52
    auto md = mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);

    this->AcquireForwardPrimitiveDescriptor(prop_kind::forward_scoring, md,
53
                                            axis);
54
  }
J
Jacek Czaja 已提交
55

A
Adam 已提交
56
  SoftmaxMKLDNNHandler(const std::vector<int64_t>& dims,
57
                       const MKLDNNMemoryFormat fmt,
58
                       const MKLDNNMemoryFormat diff_fmt, const int& axis,
59
                       const platform::MKLDNNDeviceContext& dev_ctx,
60
                       platform::Place cpu_place, const std::string& uniq_name)
61 62 63
      : platform::MKLDNNHandlerT<T, mkldnn::softmax_forward,
                                 mkldnn::softmax_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
64
            platform::CreateKey(dims, axis, uniq_name)) {
65 66 67 68 69 70
    auto data_softmax_md =
        mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);
    auto diff_softmax_md =
        mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), diff_fmt);

    this->AcquireBackwardPrimitiveDescriptor(diff_softmax_md, data_softmax_md,
71
                                             axis);
72
  }
J
Jacek Czaja 已提交
73
};
74 75 76 77 78 79 80 81 82 83

template <typename T>
class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");
F
fengjiayi 已提交
84 85 86 87 88
    PADDLE_ENFORCE_EQ(
        input->dims(), output->dims(),
        "The shape of softmax's input and output must be identical.");

    auto dims = input->dims();  // input and output share the same shape
89
    const int axis = CanonicalAxis(ctx.Attr<int>("axis"), dims.size());
F
fengjiayi 已提交
90

A
Adam 已提交
91
    auto softmax_tz = paddle::framework::vectorize<int64_t>(dims);
92

93
    SoftmaxMKLDNNHandler<T> handler(softmax_tz, input->format(), axis, dev_ctx,
H
hong 已提交
94
                                    ctx.GetPlace(), ctx.OutputName("Out"));
95

96
    auto softmax_src_memory_p = handler.AcquireSrcMemory(input);
A
Adam 已提交
97
    auto softmax_p = handler.AcquireForwardPrimitive();
98
    // For Inplace src and and dst are the same memory object
99
    auto softmax_dst_memory_p = input->IsSharedBufferWith(*output)
100 101
                                    ? softmax_src_memory_p
                                    : handler.AcquireDstMemory(output);
102

A
Adam 已提交
103
    mkldnn::stream astream(dev_ctx.GetEngine());
104 105
    softmax_p->execute(astream, {{DNNL_ARG_SRC, *softmax_src_memory_p},
                                 {DNNL_ARG_DST, *softmax_dst_memory_p}});
A
Adam 已提交
106
    astream.wait();
J
Jacek Czaja 已提交
107 108 109

    const bool is_test = ctx.Attr<bool>("is_test");
    if (!is_test) {
110
      T* output_data = output->mutable_data<T>(ctx.GetPlace());
A
Adam 已提交
111
      std::for_each(output_data, &output_data[output->numel()], [](T& val) {
112 113
        val = std::max(val, static_cast<T>(exp(-64)));
      });
J
Jacek Czaja 已提交
114
    }
115 116 117 118

    output->set_layout(framework::DataLayout::kMKLDNN);
    // Softmax output format is the same as input one
    output->set_format(input->format());
119 120 121
  }
};

J
Jacek Czaja 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134
template <typename T>
class SoftmaxMKLDNNGradKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const Tensor* output = ctx.Input<Tensor>("Out");
    auto* dout = ctx.template Input<Tensor>(framework::GradVarName("Out"));
    auto* dx =
        ctx.template Output<framework::Tensor>(framework::GradVarName("X"));

F
fengjiayi 已提交
135 136 137 138 139
    PADDLE_ENFORCE_EQ(
        dout->dims(), dx->dims(),
        "The shape of softmax_grad's input and output must be identical.");

    auto dims = dout->dims();  // input and output share the same shape
140
    const int axis = CanonicalAxis(ctx.Attr<int>("axis"), dims.size());
F
fengjiayi 已提交
141

A
Adam 已提交
142
    auto softmax_tz = paddle::framework::vectorize<int64_t>(dims);
F
fengjiayi 已提交
143

144 145
    SoftmaxMKLDNNHandler<T> handler(softmax_tz, output->format(),
                                    dout->format(), axis, dev_ctx,
H
hong 已提交
146
                                    ctx.GetPlace(), ctx.InputName("Out"));
147

148 149 150
    auto dst_memory_p = handler.AcquireDstMemory(output);
    auto diff_dst_memory_p = handler.AcquireDiffDstMemory(dout);
    auto diff_src_memory_p = handler.AcquireDiffSrcMemory(dx);
J
Jacek Czaja 已提交
151

A
Adam 已提交
152
    auto softmax_bwd_p = handler.AcquireBackwardPrimitive();
J
Jacek Czaja 已提交
153

A
Adam 已提交
154 155 156 157 158 159
    mkldnn::stream astream(dev_ctx.GetEngine());
    softmax_bwd_p->execute(astream,
                           {{MKLDNN_ARG_DST, *dst_memory_p},
                            {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_p},
                            {MKLDNN_ARG_DIFF_SRC, *diff_src_memory_p}});
    astream.wait();
160 161 162

    dx->set_layout(framework::DataLayout::kMKLDNN);
    dx->set_format(dout->format());
J
Jacek Czaja 已提交
163 164
  }
};
165 166 167 168 169 170 171
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(softmax, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::SoftmaxMKLDNNKernel<float>);
J
Jacek Czaja 已提交
172 173
REGISTER_OP_KERNEL(softmax_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::SoftmaxMKLDNNGradKernel<float>);