ut_helper.h 8.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/*
 * This file implements a UT framework to make the validation of transforming
 * Fluid Op to TRT Layer.
 */

#pragma once

22 23 24
#include <string>
#include <vector>

Y
Yan Chunwei 已提交
25 26
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
N
nhzlx 已提交
27
#include "paddle/fluid/framework/tensor_util.h"
Y
Yan Chunwei 已提交
28 29 30
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
31
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yan Chunwei 已提交
32 33 34 35 36 37 38 39 40 41 42

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Get a random float value between [low, high]
 */
float random(float low, float high) {
  static std::random_device rd;
  static std::mt19937 mt(rd());
43
  std::uniform_real_distribution<double> dist(low, high);
Y
Yan Chunwei 已提交
44 45 46 47 48 49 50 51
  return dist(mt);
}

void RandomizeTensor(framework::LoDTensor* tensor, const platform::Place& place,
                     const platform::DeviceContext& ctx) {
  auto dims = tensor->dims();
  size_t num_elements = analysis::AccuDims(dims, dims.size());
  PADDLE_ENFORCE_GT(num_elements, 0);
N
nhzlx 已提交
52 53 54 55 56

  platform::CPUPlace cpu_place;
  framework::LoDTensor temp_tensor;
  temp_tensor.Resize(dims);
  auto* temp_data = temp_tensor.mutable_data<float>(cpu_place);
57

Y
Yan Chunwei 已提交
58
  for (size_t i = 0; i < num_elements; i++) {
N
nhzlx 已提交
59
    *(temp_data + i) = random(0., 1.);
Y
Yan Chunwei 已提交
60
  }
N
nhzlx 已提交
61 62

  TensorCopySync(temp_tensor, place, tensor);
Y
Yan Chunwei 已提交
63 64 65 66 67 68 69 70 71 72
}

/*
 * Help to validate the correctness between Fluid Op and the corresponding TRT
 * layer.
 */
class TRTConvertValidation {
 public:
  TRTConvertValidation() = delete;

73
  TRTConvertValidation(int max_batch_size,
74
                       const std::unordered_set<std::string>& parameters,
G
gongweibao 已提交
75
                       framework::Scope& scope,  // NOLINT
N
nhzlx 已提交
76
                       int workspace_size = 1 << 10, bool if_add_batch = true)
77 78
      : parameters_(parameters),
        scope_(scope),
N
nhzlx 已提交
79 80
        if_add_batch_(if_add_batch),
        max_batch_size_(max_batch_size) {
Y
Yan Chunwei 已提交
81
    PADDLE_ENFORCE_EQ(cudaStreamCreate(&stream_), 0);
N
nhzlx 已提交
82 83
    engine_.reset(
        new TensorRTEngine(max_batch_size, workspace_size, false, nullptr, 0));
N
nhzlx 已提交
84
    engine_->InitNetwork();
Y
Yan Chunwei 已提交
85 86 87
  }

  // Declare a Variable as input with random initialization.
N
nhzlx 已提交
88 89 90 91 92 93
  void DeclInputVar(const std::string& name, const std::vector<int> tensor_dims,
                    const nvinfer1::Dims& trt_dims) {
    DeclVar(name, tensor_dims);
    engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, trt_dims);
  }

Y
Yan Chunwei 已提交
94 95 96 97 98 99
  void DeclInputVar(const std::string& name, const nvinfer1::Dims& dims) {
    DeclVar(name, dims);
    // Declare TRT inputs.
    engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, dims);
  }

N
nhzlx 已提交
100 101 102 103
  void DeclParamVar(const std::string& name, const std::vector<int> dim_vec) {
    DeclVar(name, dim_vec);
  }

104 105
  // Declare a parameter varaible in the scope.
  void DeclParamVar(const std::string& name, const nvinfer1::Dims& dims) {
106
    DeclVar(name, dims, true);
107 108
  }

N
nhzlx 已提交
109 110 111 112
  void DeclOutputVar(const std::string& name, const std::vector<int> dim_vec) {
    DeclVar(name, dim_vec);
  }

Y
Yan Chunwei 已提交
113 114 115 116
  void DeclOutputVar(const std::string& name, const nvinfer1::Dims& dims) {
    DeclVar(name, dims);
  }

N
nhzlx 已提交
117
  void DeclVar(const std::string& name, const std::vector<int> dim_vec) {
N
nhzlx 已提交
118
    platform::CUDADeviceContext ctx(place_);
Y
Yan Chunwei 已提交
119

N
nhzlx 已提交
120 121 122
    auto* x = scope_.Var(name);
    auto* x_tensor = x->GetMutable<framework::LoDTensor>();
    x_tensor->Resize(framework::make_ddim(dim_vec));
N
nhzlx 已提交
123
    RandomizeTensor(x_tensor, place_, ctx);
N
nhzlx 已提交
124 125 126 127
  }
  // Declare a variable in a fluid Scope.
  void DeclVar(const std::string& name, const nvinfer1::Dims& dims,
               bool is_param = false) {
Y
Yan Chunwei 已提交
128
    // Init Fluid tensor.
129
    std::vector<int> dim_vec(dims.d, dims.d + dims.nbDims);
130
    // There is no batchsize in ITensor's shape, but We should add it to
N
nhzlx 已提交
131 132 133 134
    // tensor's shape of fluid. If the variable is not parameter and the
    // if_add_batch_ flag is true, add the max batchsize to dim_vec.
    if (is_param != true && if_add_batch_ == true)
      dim_vec.insert(dim_vec.begin(), max_batch_size_);
N
nhzlx 已提交
135 136

    DeclVar(name, dim_vec);
Y
Yan Chunwei 已提交
137 138 139 140 141
  }

  void SetOp(const framework::proto::OpDesc& desc) {
    op_ = framework::OpRegistry::CreateOp(desc);

142 143
    Singleton<OpConverter>::Global().ConvertOp(
        desc, parameters_, scope_, engine_.get(), true /*test_mode*/);
Y
Yan Chunwei 已提交
144 145 146 147

    engine_->FreezeNetwork();

    // Declare outputs.
F
fengjiayi 已提交
148
    op_desc_.reset(new framework::OpDesc(desc, nullptr));
Y
Yan Chunwei 已提交
149 150
  }

N
nhzlx 已提交
151 152 153
  // We use the set 'neglected_output' here, because some Ops like batch norm,
  // the outputs specified in the op des are only used during training,
  // so we should neglect those output during inference.
N
nhzlx 已提交
154 155
  void Execute(int batch_size,
               std::unordered_set<std::string> neglected_output = {}) {
Y
Yan Chunwei 已提交
156
    // Execute Fluid Op
N
nhzlx 已提交
157
    PADDLE_ENFORCE_LE(batch_size, max_batch_size_);
N
nhzlx 已提交
158 159
    platform::CUDADeviceContext ctx(place_);
    op_->Run(scope_, place_);
N
nhzlx 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

    std::vector<std::string> input_output_names;

    // Note: we need filter the parameter
    for (const auto& input : op_desc_->InputArgumentNames()) {
      if (parameters_.count(input)) continue;
      input_output_names.push_back(input);
    }

    // Collect the fluid outputs.
    std::vector<std::vector<float>> fluid_outs;
    for (const auto& output : op_desc_->OutputArgumentNames()) {
      if (neglected_output.count(output)) continue;
      input_output_names.push_back(output);
      std::vector<float> fluid_out;
      auto* var = scope_.FindVar(output);
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      framework::TensorToVector(*tensor, ctx, &fluid_out);
      fluid_outs.push_back(fluid_out);
    }

    // Bind input and output for TRT.
    const int num_bindings = input_output_names.size();
    std::vector<void*> buffers(num_bindings);

    for (const std::string& name : input_output_names) {
      auto* var = scope_.FindVar(name);
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      const int bind_index = engine_->engine()->getBindingIndex(name.c_str());
      buffers[bind_index] =
N
nhzlx 已提交
190
          static_cast<void*>(tensor->mutable_data<float>(place_));
N
nhzlx 已提交
191 192
    }

193
    // Execute TRT.
194
    engine_->Execute(batch_size, &buffers, stream_);
Y
Yan Chunwei 已提交
195 196

    ASSERT_FALSE(op_desc_->OutputArgumentNames().empty());
N
nhzlx 已提交
197
    int index = 0;
Y
Yan Chunwei 已提交
198
    for (const auto& output : op_desc_->OutputArgumentNames()) {
N
nhzlx 已提交
199
      if (neglected_output.count(output)) continue;
N
nhzlx 已提交
200
      std::vector<float> trt_out;
Y
Yan Chunwei 已提交
201
      auto* var = scope_.FindVar(output);
N
nhzlx 已提交
202 203
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      framework::TensorToVector(*tensor, ctx, &trt_out);
N
nhzlx 已提交
204

N
nhzlx 已提交
205
      size_t fluid_out_size = fluid_outs[index].size();
N
nhzlx 已提交
206
      if (if_add_batch_ == true) {
N
nhzlx 已提交
207 208
        fluid_out_size =
            batch_size * (framework::product(tensor->dims()) / max_batch_size_);
N
nhzlx 已提交
209
      }
N
nhzlx 已提交
210

N
nhzlx 已提交
211
      for (size_t i = 0; i < fluid_out_size; i++) {
212
        // Loose the threshold for CI in different machine model.
N
nhzlx 已提交
213
        EXPECT_LT(std::abs(fluid_outs[index][i] - trt_out[i]), 2e-5);
Y
Yan Chunwei 已提交
214
      }
N
nhzlx 已提交
215
      index += 1;
Y
Yan Chunwei 已提交
216 217 218 219 220 221
    }
  }

  framework::Scope& scope() { return scope_; }

 private:
N
nhzlx 已提交
222
  platform::CUDAPlace place_;
Y
Yan Chunwei 已提交
223 224 225 226
  std::unique_ptr<TensorRTEngine> engine_;
  cudaStream_t stream_;
  std::unique_ptr<framework::OperatorBase> op_;
  std::unique_ptr<framework::OpDesc> op_desc_;
227 228
  const std::unordered_set<std::string>& parameters_;
  framework::Scope& scope_;
N
nhzlx 已提交
229 230 231 232 233 234
  // The ITensor of trt does not cotain the batch size,
  // bug, in most cases, we need to set batch size for
  // fluid's tensor shape. This variable indicates
  // whether to add batch size to tensor shape of fluid.
  bool if_add_batch_;
  int max_batch_size_;
Y
Yan Chunwei 已提交
235 236 237 238 239
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle