beam_search_decode_op.h 9.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <algorithm>
18
#include <memory>
19
#include <vector>
20

21
#include "paddle/fluid/framework/lod_tensor.h"
Y
Yi Wang 已提交
22 23
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
24
#include "paddle/fluid/platform/enforce.h"
Q
Qiao Longfei 已提交
25 26 27 28 29 30 31 32

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;
using LoDTensorArray = framework::LoDTensorArray;

// all the lod have 2 levels.
33
// The first is source level, the second is sentence level.
34 35
// source level describe how many prefixes (branchs) for each source sentece
// (beam). sentence level describe how these candidates belong to the prefixes.
Q
Qiao Longfei 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49
const size_t kSourceLevel = 0;
const size_t kSentenceLevel = 1;

template <typename T>
struct Sentence {
  std::vector<int64_t> word_ids;
  std::vector<T> scores;
};

template <typename T>
using SentenceVector = std::vector<Sentence<T>>;

template <typename T>
struct BeamSearchDecoder {
50 51 52
  BeamSearchDecoder(size_t beam_size, int end_id)
      : beam_size_(beam_size), end_id_(end_id) {}

Q
Qiao Longfei 已提交
53 54 55 56 57 58 59 60 61
  /**
   * convert the result sentence_vector for each source sentence into two
   * LodTensor.
   * One is all candidate sentences with word id, one is all candidate sentences
   * with word score.
   * Param:
   *  sentence_vector_list: sentence_vector for each source sentence.
   *  id_tensor: result LoDTensor for sentences of id.
   *  score_tensor: result LoDTensor for sentences of score.
62 63
   *  reverse: whether ids of sentence in sentence_vector_list is reversed
   *  sort_by_score: whether to sort hypotheses of each sentence by scores.
Q
Qiao Longfei 已提交
64 65
   */
  void ConvertSentenceVectorToLodTensor(
66 67 68 69
      std::vector<SentenceVector<T>> sentence_vector_list,
      LoDTensor* id_tensor,
      LoDTensor* score_tensor,
      bool reverse = true,
70
      bool sort_by_score = true) const;
Q
Qiao Longfei 已提交
71 72

  /**
73 74
   * Gather the hypotheses for each source sentence by backtrace though the
   * LoDTensorArray step_ids whose lods reserve the path in the tree.
Q
Qiao Longfei 已提交
75
   */
76
  void Backtrace(const LoDTensorArray& step_ids,
77 78
                 const LoDTensorArray& step_scores,
                 LoDTensor* id_tensor,
79 80 81 82
                 LoDTensor* score_tensor) const;

  size_t beam_size_;
  int end_id_;
Q
Qiao Longfei 已提交
83 84 85 86
};

template <typename T>
void BeamSearchDecoder<T>::ConvertSentenceVectorToLodTensor(
87 88 89 90 91
    std::vector<SentenceVector<T>> sentence_vector_list,
    LoDTensor* id_tensor,
    LoDTensor* score_tensor,
    bool reverse,
    bool sort_by_score) const {
Q
Qiao Longfei 已提交
92 93
  size_t src_num = sentence_vector_list.size();

94
  PADDLE_ENFORCE_NE(
95 96
      src_num,
      0,
97 98 99 100 101 102 103
      platform::errors::InvalidArgument(
          "src_num is the sequence number of the first decoding step"
          ", indicating by Input(Ids)[0].lod[0].size."
          "src_num has wrong value."
          "src_num should not be 0,"
          "But received %d.",
          src_num));
Q
Qiao Longfei 已提交
104 105 106 107 108 109 110

  std::vector<size_t> source_level_lod = {0};
  std::vector<size_t> sentence_level_lod = {0};
  std::vector<int64_t> id_data;
  std::vector<T> score_data;

  for (size_t src_idx = 0; src_idx < src_num; ++src_idx) {
111 112 113 114 115 116 117 118 119 120
    if (sort_by_score) {
      sort(sentence_vector_list[src_idx].begin(),
           sentence_vector_list[src_idx].end(),
           [reverse](const Sentence<T>& a, const Sentence<T>& b) {
             if (reverse)
               return a.scores.front() > b.scores.front();
             else
               return a.scores.back() > b.scores.back();
           });
    }
Q
Qiao Longfei 已提交
121
    for (Sentence<T>& sentence : sentence_vector_list[src_idx]) {
122
      if (reverse) {
123 124
        id_data.insert(id_data.end(),
                       sentence.word_ids.rbegin(),
125
                       sentence.word_ids.rend());
126 127
        score_data.insert(
            score_data.end(), sentence.scores.rbegin(), sentence.scores.rend());
128
      } else {
129 130 131 132
        id_data.insert(
            id_data.end(), sentence.word_ids.begin(), sentence.word_ids.end());
        score_data.insert(
            score_data.end(), sentence.scores.begin(), sentence.scores.end());
133 134
      }

Q
Qiao Longfei 已提交
135 136 137 138 139 140 141
      sentence_level_lod.push_back(sentence_level_lod.back() +
                                   sentence.word_ids.size());
    }
    source_level_lod.push_back(source_level_lod.back() +
                               sentence_vector_list[src_idx].size());
  }

142 143
  auto cpu_place = std::unique_ptr<paddle::platform::CPUPlace>(
      new paddle::platform::CPUPlace());
144
  paddle::platform::CPUDeviceContext cpu_ctx(*cpu_place);
Q
Qiao Longfei 已提交
145 146 147 148 149 150 151 152

  framework::LoD lod;
  lod.push_back(source_level_lod);
  lod.push_back(sentence_level_lod);

  id_tensor->set_lod(lod);
  id_tensor->Resize({static_cast<int64_t>(id_data.size())});
  id_tensor->mutable_data<int64_t>(paddle::platform::CPUPlace());
Y
Yi Wang 已提交
153
  framework::TensorFromVector<int64_t>(id_data, cpu_ctx, id_tensor);
Q
Qiao Longfei 已提交
154 155 156 157

  score_tensor->set_lod(lod);
  score_tensor->Resize({static_cast<int64_t>(score_data.size())});
  score_tensor->mutable_data<T>(paddle::platform::CPUPlace());
Y
Yi Wang 已提交
158
  framework::TensorFromVector<T>(score_data, cpu_ctx, score_tensor);
Q
Qiao Longfei 已提交
159 160
}

161 162 163 164 165
template <typename T>
void BeamSearchDecoder<T>::Backtrace(const LoDTensorArray& step_ids,
                                     const LoDTensorArray& step_scores,
                                     LoDTensor* id_tensor,
                                     LoDTensor* score_tensor) const {
166
  PADDLE_ENFORCE_NE(
167 168
      step_ids.empty(),
      true,
169 170 171
      platform::errors::InvalidArgument("Input(Ids) should not be empty."
                                        "But the Input(Ids) is empty."));
  PADDLE_ENFORCE_EQ(
172 173
      step_ids.size(),
      step_scores.size(),
174 175 176 177
      platform::errors::InvalidArgument(
          "The size of Input(Ids) and Input(Scores) should be "
          "the same. But the size of Input(Ids) and Input(Scores) "
          "are not equal."));
178 179 180 181
  const size_t step_num = step_ids.size();
  const size_t src_num = step_ids.at(0).lod().at(kSourceLevel).size() - 1;
  std::vector<SentenceVector<T>> sentence_vector_list(
      src_num, SentenceVector<T>(beam_size_));
182
  std::vector<std::vector<size_t>> prefix_idx_vector_list(src_num);
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
  for (int step_id = step_num - 1; step_id >= 0; --step_id) {
    auto& cur_ids = step_ids.at(step_id);
    auto& cur_scores = step_scores.at(step_id);
    for (size_t src_idx = 0; src_idx < src_num; ++src_idx) {
      // for each source sentence
      auto& sentence_vector = sentence_vector_list.at(src_idx);
      auto& prefix_idx_vector = prefix_idx_vector_list.at(src_idx);
      size_t src_prefix_start = cur_ids.lod().at(kSourceLevel)[src_idx];
      size_t src_prefix_end = cur_ids.lod().at(kSourceLevel)[src_idx + 1];
      if (prefix_idx_vector.empty()) {  // be finished and pruned at this step
                                        // or the last time step
        for (size_t prefix_idx = src_prefix_start; prefix_idx < src_prefix_end;
             ++prefix_idx) {
          size_t candidate_start = cur_ids.lod().at(kSentenceLevel)[prefix_idx];
          size_t candidate_end =
              cur_ids.lod().at(kSentenceLevel)[prefix_idx + 1];
          for (size_t candidate_idx = candidate_start;
200 201
               candidate_idx < candidate_end;
               ++candidate_idx) {
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
            prefix_idx_vector.push_back(prefix_idx);
            size_t idx = prefix_idx_vector.size() - 1;
            auto cur_id = cur_ids.data<int64_t>()[candidate_idx];
            auto cur_score = cur_scores.data<T>()[candidate_idx];
            sentence_vector.at(idx).word_ids.push_back(cur_id);
            sentence_vector.at(idx).scores.push_back(cur_score);
          }
        }
      } else {  // use prefix_idx_vector to backtrace
        size_t src_candidate_start =
            cur_ids.lod().at(kSentenceLevel)[src_prefix_start];
        size_t prefix_idx = src_prefix_start;
        size_t candidate_num =
            cur_ids.lod().at(kSentenceLevel)[prefix_idx + 1] -
            cur_ids.lod().at(kSentenceLevel)[prefix_idx];
        for (size_t idx = 0; idx < prefix_idx_vector.size(); ++idx) {
          auto candidate_idx = prefix_idx_vector.at(idx);
          auto cur_id = cur_ids.data<int64_t>()[candidate_idx];
          auto cur_score = cur_scores.data<T>()[candidate_idx];
          if (cur_id != end_id_ || sentence_vector.at(idx).word_ids.empty()) {
            // to skip redundant end tokens
            sentence_vector.at(idx).word_ids.push_back(cur_id);
            sentence_vector.at(idx).scores.push_back(cur_score);
          }

          while (src_candidate_start + candidate_num <=
                 candidate_idx) {  // search the corresponding prefix
            prefix_idx++;
            candidate_num += cur_ids.lod().at(kSentenceLevel)[prefix_idx + 1] -
                             cur_ids.lod().at(kSentenceLevel)[prefix_idx];
          }
          prefix_idx_vector.at(idx) = prefix_idx;
        }
      }
    }
  }

239 240
  ConvertSentenceVectorToLodTensor(
      sentence_vector_list, id_tensor, score_tensor, true, true);
241 242
}

Q
Qiao Longfei 已提交
243 244
}  // namespace operators
}  // namespace paddle