beam_search_decode_op.h 14.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <algorithm>
18
#include <vector>
19

Y
Yi Wang 已提交
20 21
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
Q
Qiao Longfei 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;
using LoDTensorArray = framework::LoDTensorArray;

// all the lod have 2 levels.
// The First is source level, the second is sentence level.
// source level describe how many candidate words for this source.
// sentence level describe these candidates belong to which prefix
const size_t kSourceLevel = 0;
const size_t kSentenceLevel = 1;

template <typename T>
struct BeamNode {
  BeamNode(int64_t word_id, T score) : word_id_(word_id), score_(score) {}

  ~BeamNode() {
    if (parent_) {
      parent_->DropKid(this);
      if (parent_->kids_.size() == 0UL) {
        delete parent_;
      }
    }
    VLOG(3) << "Delete BeamNode root with word_id:" << this->word_id_;
  }

  void AppendTo(BeamNode* parent) {
    parent_ = parent;
    parent->kids_.insert(this);
  }

  void DropKid(BeamNode* kid) { kids_.erase(kid); }

  BeamNode* parent_ = nullptr;
  std::unordered_set<BeamNode*> kids_;
  int64_t word_id_;
  T score_;
};

template <typename T>
using BeamNodeVector = std::vector<std::unique_ptr<BeamNode<T>>>;

template <typename T>
struct Sentence {
  std::vector<int64_t> word_ids;
  std::vector<T> scores;
};

template <typename T>
using SentenceVector = std::vector<Sentence<T>>;

template <typename T>
struct BeamSearchDecoder {
77 78 79
  BeamSearchDecoder(size_t beam_size, int end_id)
      : beam_size_(beam_size), end_id_(end_id) {}

Q
Qiao Longfei 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
  /**
   * make a BeamNode and all it's related prefix BeanNode into a Sentence.
   */
  Sentence<T> MakeSentence(const BeamNode<T>* node) const;

  /**
   * Param:
   *  cur_ids: LoDTensor of One step for word ID
   *  cur_scores: LoDTensor of One Step for word score
   *  prefixes_list: prefixes for each source sentence.
   *  sentence_vector_list: result sentence_vector for each source sentence.
   * Return:
   *  a new prefixes list for each source of current step
   */
  std::vector<BeamNodeVector<T>> PackTwoSteps(
      const LoDTensor& cur_ids, const LoDTensor& cur_scores,
96
      std::vector<BeamNodeVector<T>>* prefixes_list,
Q
Qiao Longfei 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110
      std::vector<SentenceVector<T>>* sentence_vector_list) const;

  /**
   * convert the result sentence_vector for each source sentence into two
   * LodTensor.
   * One is all candidate sentences with word id, one is all candidate sentences
   * with word score.
   * Param:
   *  sentence_vector_list: sentence_vector for each source sentence.
   *  id_tensor: result LoDTensor for sentences of id.
   *  score_tensor: result LoDTensor for sentences of score.
   */
  void ConvertSentenceVectorToLodTensor(
      std::vector<SentenceVector<T>> sentence_vector_list, LoDTensor* id_tensor,
111 112
      LoDTensor* score_tensor, bool reverse = false,
      bool sort_by_score = true) const;
Q
Qiao Longfei 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

  /**
   * Pack all steps of id/score LodTensor into sentence LoDTensor
   * it's main logic is:
   * ```python
   *   prefix
   *   result_sentence
   *   result_lod_tensor
   *
   *   for (step in steps):
   *     prefix = PackTwoSteps(prefix, step, &result_sentence)
   *   ConvertSentenceVector<T>ToLodTensor(result_sentence, &result_lod_tensor)
   * ```
   */
  void PackAllSteps(const LoDTensorArray& step_ids,
                    const LoDTensorArray& step_scores, LoDTensor* id_tensor,
                    LoDTensor* score_tensor) const;
130 131 132 133 134 135 136

  void Backtrace(const LoDTensorArray& step_ids,
                 const LoDTensorArray& step_scores, LoDTensor* id_tensor,
                 LoDTensor* score_tensor) const;

  size_t beam_size_;
  int end_id_;
Q
Qiao Longfei 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
};

template <typename T>
Sentence<T> BeamSearchDecoder<T>::MakeSentence(const BeamNode<T>* node) const {
  Sentence<T> sentence;
  while (node != nullptr) {
    sentence.word_ids.emplace_back(node->word_id_);
    sentence.scores.emplace_back(node->score_);
    node = node->parent_;
  }

  std::reverse(std::begin(sentence.word_ids), std::end(sentence.word_ids));
  std::reverse(std::begin(sentence.scores), std::end(sentence.scores));

  return sentence;
}

template <typename T>
std::vector<BeamNodeVector<T>> BeamSearchDecoder<T>::PackTwoSteps(
    const LoDTensor& cur_ids, const LoDTensor& cur_scores,
157
    std::vector<BeamNodeVector<T>>* prefixes_list,
Q
Qiao Longfei 已提交
158 159 160 161 162 163 164 165 166 167 168 169
    std::vector<SentenceVector<T>>* sentence_vector_list) const {
  std::vector<BeamNodeVector<T>> result;

  for (size_t src_idx = 0; src_idx < cur_ids.lod()[kSourceLevel].size() - 1;
       ++src_idx) {
    size_t src_start = cur_ids.lod().at(kSourceLevel)[src_idx];
    size_t src_end = cur_ids.lod().at(kSourceLevel)[src_idx + 1];

    BeamNodeVector<T> beam_nodes;

    // if prefixes size is 0, it means this is the first step. In this step,
    // all candidate id is the start of candidate sentences.
170
    if (prefixes_list->empty()) {
Q
Qiao Longfei 已提交
171 172 173 174 175 176 177 178
      PADDLE_ENFORCE_EQ(cur_ids.lod().at(kSourceLevel).back(),
                        cur_ids.lod().at(kSentenceLevel).back(),
                        "in the first step");
      for (size_t id_idx = src_start; id_idx < src_end; ++id_idx) {
        beam_nodes.push_back(std::unique_ptr<BeamNode<T>>(new BeamNode<T>(
            cur_ids.data<int64_t>()[id_idx], cur_scores.data<T>()[id_idx])));
      }
    } else {
179
      BeamNodeVector<T>& prefixes = prefixes_list->at(src_idx);
Q
Qiao Longfei 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
      SentenceVector<T>& sentence_vector = (*sentence_vector_list)[src_idx];

      PADDLE_ENFORCE_EQ(src_end - src_start, prefixes.size(),
                        "prefix and candidate set number should be the same");

      auto candidate_offset = cur_ids.lod()[kSentenceLevel];
      for (size_t prefix_idx = 0; prefix_idx < prefixes.size(); ++prefix_idx) {
        std::unique_ptr<BeamNode<T>>& prefix = prefixes[prefix_idx];
        size_t candidate_start = candidate_offset[src_start + prefix_idx];
        size_t candidate_end = candidate_offset[src_start + prefix_idx + 1];
        if (candidate_start == candidate_end) {
          VLOG(3) << "this sentence has no more candidate, "
                     "add to result sentence and rm it from beam tree";
          sentence_vector.push_back(MakeSentence(prefix.get()));
          prefix.reset();
        } else {
          for (size_t candidate_idx = candidate_start;
               candidate_idx < candidate_end; ++candidate_idx) {
            auto* candidate =
                new BeamNode<T>(cur_ids.data<int64_t>()[candidate_idx],
                                cur_scores.data<T>()[candidate_idx]);
            candidate->AppendTo(prefix.get());
            beam_nodes.push_back(std::unique_ptr<BeamNode<T>>(candidate));
          }
          prefix.release();
        }
      }
    }
    result.push_back(std::move(beam_nodes));
  }
  return result;
}

template <typename T>
void BeamSearchDecoder<T>::ConvertSentenceVectorToLodTensor(
    std::vector<SentenceVector<T>> sentence_vector_list, LoDTensor* id_tensor,
216
    LoDTensor* score_tensor, bool reverse, bool sort_by_score) const {
Q
Qiao Longfei 已提交
217 218 219 220 221 222 223 224 225 226
  size_t src_num = sentence_vector_list.size();

  PADDLE_ENFORCE_NE(src_num, 0, "src_num should not be 0");

  std::vector<size_t> source_level_lod = {0};
  std::vector<size_t> sentence_level_lod = {0};
  std::vector<int64_t> id_data;
  std::vector<T> score_data;

  for (size_t src_idx = 0; src_idx < src_num; ++src_idx) {
227 228 229 230 231 232 233 234 235 236
    if (sort_by_score) {
      sort(sentence_vector_list[src_idx].begin(),
           sentence_vector_list[src_idx].end(),
           [reverse](const Sentence<T>& a, const Sentence<T>& b) {
             if (reverse)
               return a.scores.front() > b.scores.front();
             else
               return a.scores.back() > b.scores.back();
           });
    }
Q
Qiao Longfei 已提交
237
    for (Sentence<T>& sentence : sentence_vector_list[src_idx]) {
238 239 240 241 242 243 244 245 246 247 248 249
      if (reverse) {
        id_data.insert(id_data.end(), sentence.word_ids.rbegin(),
                       sentence.word_ids.rend());
        score_data.insert(score_data.end(), sentence.scores.rbegin(),
                          sentence.scores.rend());
      } else {
        id_data.insert(id_data.end(), sentence.word_ids.begin(),
                       sentence.word_ids.end());
        score_data.insert(score_data.end(), sentence.scores.begin(),
                          sentence.scores.end());
      }

Q
Qiao Longfei 已提交
250 251 252 253 254 255 256
      sentence_level_lod.push_back(sentence_level_lod.back() +
                                   sentence.word_ids.size());
    }
    source_level_lod.push_back(source_level_lod.back() +
                               sentence_vector_list[src_idx].size());
  }

257 258 259
  auto cpu_place = std::unique_ptr<paddle::platform::CPUPlace>(
      new paddle::platform::CPUPlace());
  paddle::platform::CPUDeviceContext cpu_ctx(*cpu_place.get());
Q
Qiao Longfei 已提交
260 261 262 263 264 265 266 267

  framework::LoD lod;
  lod.push_back(source_level_lod);
  lod.push_back(sentence_level_lod);

  id_tensor->set_lod(lod);
  id_tensor->Resize({static_cast<int64_t>(id_data.size())});
  id_tensor->mutable_data<int64_t>(paddle::platform::CPUPlace());
Y
Yi Wang 已提交
268
  framework::TensorFromVector<int64_t>(id_data, cpu_ctx, id_tensor);
Q
Qiao Longfei 已提交
269 270 271 272

  score_tensor->set_lod(lod);
  score_tensor->Resize({static_cast<int64_t>(score_data.size())});
  score_tensor->mutable_data<T>(paddle::platform::CPUPlace());
Y
Yi Wang 已提交
273
  framework::TensorFromVector<T>(score_data, cpu_ctx, score_tensor);
Q
Qiao Longfei 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
}

template <typename T>
void BeamSearchDecoder<T>::PackAllSteps(const LoDTensorArray& step_ids,
                                        const LoDTensorArray& step_scores,
                                        LoDTensor* id_tensor,
                                        LoDTensor* score_tensor) const {
  PADDLE_ENFORCE(!step_ids.empty(), "step num should be larger than 0");
  PADDLE_ENFORCE_EQ(step_ids.size(), step_scores.size(),
                    "step_ids and step_scores should be the same");
  const size_t step_num = step_ids.size();
  const size_t src_num = step_ids.at(0).lod().at(kSourceLevel).size() - 1;

  PADDLE_ENFORCE_GT(src_num, 0UL, "source num should be larger than 0");

  // previous prefixes for each step,
  // the init length is 0, means this is the first step.
  std::vector<BeamNodeVector<T>> beamnode_vector_list(0);
  std::vector<SentenceVector<T>> sentence_vector_list(src_num);

  // pack all steps for one batch first, then another batch
  for (size_t step_id = 0; step_id < step_num; ++step_id) {
    beamnode_vector_list =
        PackTwoSteps(step_ids.at(step_id), step_scores.at(step_id),
298
                     &beamnode_vector_list, &sentence_vector_list);
Q
Qiao Longfei 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311
  }
  // append last beam_node to result
  for (size_t src_idx = 0; src_idx < src_num; ++src_idx) {
    for (auto& beam_node : beamnode_vector_list.at(src_idx)) {
      sentence_vector_list[src_idx].push_back(MakeSentence(beam_node.get()));
      beam_node.reset();
    }
  }

  ConvertSentenceVectorToLodTensor(sentence_vector_list, id_tensor,
                                   score_tensor);
}

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
template <typename T>
void BeamSearchDecoder<T>::Backtrace(const LoDTensorArray& step_ids,
                                     const LoDTensorArray& step_scores,
                                     LoDTensor* id_tensor,
                                     LoDTensor* score_tensor) const {
  PADDLE_ENFORCE(!step_ids.empty(), "step num should be larger than 0");
  PADDLE_ENFORCE_EQ(step_ids.size(), step_scores.size(),
                    "step_ids and step_scores should be the same");
  const size_t step_num = step_ids.size();
  const size_t src_num = step_ids.at(0).lod().at(kSourceLevel).size() - 1;
  std::vector<SentenceVector<T>> sentence_vector_list(
      src_num, SentenceVector<T>(beam_size_));
  std::vector<std::vector<size_t>> prefix_idx_vector_list(
      src_num, std::vector<size_t>());
  for (int step_id = step_num - 1; step_id >= 0; --step_id) {
    auto& cur_ids = step_ids.at(step_id);
    auto& cur_scores = step_scores.at(step_id);
    for (size_t src_idx = 0; src_idx < src_num; ++src_idx) {
      // for each source sentence
      auto& sentence_vector = sentence_vector_list.at(src_idx);
      auto& prefix_idx_vector = prefix_idx_vector_list.at(src_idx);
      size_t src_prefix_start = cur_ids.lod().at(kSourceLevel)[src_idx];
      size_t src_prefix_end = cur_ids.lod().at(kSourceLevel)[src_idx + 1];
      if (prefix_idx_vector.empty()) {  // be finished and pruned at this step
                                        // or the last time step
        for (size_t prefix_idx = src_prefix_start; prefix_idx < src_prefix_end;
             ++prefix_idx) {
          size_t candidate_start = cur_ids.lod().at(kSentenceLevel)[prefix_idx];
          size_t candidate_end =
              cur_ids.lod().at(kSentenceLevel)[prefix_idx + 1];
          for (size_t candidate_idx = candidate_start;
               candidate_idx < candidate_end; ++candidate_idx) {
            prefix_idx_vector.push_back(prefix_idx);
            size_t idx = prefix_idx_vector.size() - 1;
            auto cur_id = cur_ids.data<int64_t>()[candidate_idx];
            auto cur_score = cur_scores.data<T>()[candidate_idx];
            sentence_vector.at(idx).word_ids.push_back(cur_id);
            sentence_vector.at(idx).scores.push_back(cur_score);
          }
        }
      } else {  // use prefix_idx_vector to backtrace
        size_t src_candidate_start =
            cur_ids.lod().at(kSentenceLevel)[src_prefix_start];
        size_t prefix_idx = src_prefix_start;
        size_t candidate_num =
            cur_ids.lod().at(kSentenceLevel)[prefix_idx + 1] -
            cur_ids.lod().at(kSentenceLevel)[prefix_idx];
        for (size_t idx = 0; idx < prefix_idx_vector.size(); ++idx) {
          auto candidate_idx = prefix_idx_vector.at(idx);
          auto cur_id = cur_ids.data<int64_t>()[candidate_idx];
          auto cur_score = cur_scores.data<T>()[candidate_idx];
          if (cur_id != end_id_ || sentence_vector.at(idx).word_ids.empty()) {
            // to skip redundant end tokens
            sentence_vector.at(idx).word_ids.push_back(cur_id);
            sentence_vector.at(idx).scores.push_back(cur_score);
          }

          while (src_candidate_start + candidate_num <=
                 candidate_idx) {  // search the corresponding prefix
            prefix_idx++;
            candidate_num += cur_ids.lod().at(kSentenceLevel)[prefix_idx + 1] -
                             cur_ids.lod().at(kSentenceLevel)[prefix_idx];
          }
          prefix_idx_vector.at(idx) = prefix_idx;
        }
      }
    }
  }

  ConvertSentenceVectorToLodTensor(sentence_vector_list, id_tensor,
                                   score_tensor, true, true);
}

Q
Qiao Longfei 已提交
385 386
}  // namespace operators
}  // namespace paddle