test_activation_op.py 44.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
qijun 已提交
17 18
import unittest
import numpy as np
K
Kexin Zhao 已提交
19
import paddle.fluid.core as core
Q
qijun 已提交
20
from op_test import OpTest
C
Clementine 已提交
21
from scipy.special import expit, erf
22
import paddle
23
import paddle.fluid as fluid
24 25
import paddle.nn as nn
import paddle.nn.functional as functional
26
from paddle.fluid import compiler, Program, program_guard
Q
qijun 已提交
27 28


29
class TestSqrtOpError(unittest.TestCase):
Z
Zhaolong Xing 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of sqrt op must be Variable or numpy.ndarray.
            in1 = 1
            self.assertRaises(TypeError, fluid.layers.sqrt, in1)
            # The input dtype of sqrt op must be float16, float32, float64.
            in2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.sqrt, in2)

            in3 = fluid.layers.data(
                name='input3', shape=[12, 10], dtype="float16")
            fluid.layers.sqrt(x=in3)


C
chengduo 已提交
45
class TestActivation(OpTest):
Q
qijun 已提交
46 47
    def setUp(self):
        self.op_type = "exp"
48
        self.init_dtype()
49
        self.init_kernel_type()
50 51 52 53 54 55

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
56 57 58 59 60

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
61 62
        if self.dtype == np.float16:
            return
63
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
64

65
    def init_dtype(self):
66
        self.dtype = np.float64
67

68 69 70
    def init_kernel_type(self):
        pass

Q
qijun 已提交
71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
class TestParameter(object):
    def test_out(self):
        with fluid.program_guard(fluid.Program()):
            data = fluid.layers.data(name="X", shape=[1])
            out = eval("paddle.%s(data, out=data)" % self.op_type)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result = exe.run(feed={"X": np.array([0.1])},
                             fetch_list=[data, out])
            self.assertEqual(result[0], result[1])

    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
            data = fluid.layers.data(name="X", shape=[1])
            out = eval("paddle.%s(data, name='Y', out=data)" % self.op_type)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result = exe.run(feed={"X": np.array([0.1])},
                             fetch_list=[data, out])
            self.assertEqual(result[0], result[1])

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = eval("paddle.%s(x).numpy()" % self.op_type)
            z_expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(z, z_expected)


C
chengduo 已提交
102
class TestSigmoid(TestActivation):
Q
qijun 已提交
103 104
    def setUp(self):
        self.op_type = "sigmoid"
105 106 107 108 109 110 111
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
112

113 114 115
    def init_dtype(self):
        self.dtype = np.float32

116
    def test_check_grad(self):
117 118 119 120
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

121

C
chengduo 已提交
122
class TestLogSigmoid(TestActivation):
123 124
    def setUp(self):
        self.op_type = "logsigmoid"
125 126 127 128 129 130 131
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
132 133

    def test_check_grad(self):
134 135
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
136
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
137 138


139
class TestTanh(TestActivation, TestParameter):
140 141
    def setUp(self):
        self.op_type = "tanh"
142 143 144 145 146 147
        self.init_dtype()
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
148 149

    def test_check_grad(self):
150 151
        if self.dtype == np.float16:
            return
152
        self.check_grad(['X'], 'Out')
153

154 155 156 157 158 159
    def init_dtype(self):
        #TODO If dtype is float64, the output (Out) has diff at CPUPlace
        # when using and not using inplace. Therefore, set dtype as float32
        # for now.
        self.dtype = np.float32

160

161
class TestAtan(TestActivation, TestParameter):
162 163 164 165 166 167 168 169 170 171 172 173 174
    def setUp(self):
        self.op_type = "atan"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.arctan(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
175
        self.check_grad(['X'], 'Out')
176

177 178 179 180 181 182 183 184
    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = paddle.atan(x).numpy()
            z_expected = np.arctan(np_x)
            self.assertEqual(z, z_expected)

185

C
chengduo 已提交
186
class TestTanhShrink(TestActivation):
K
Kavya Srinet 已提交
187 188
    def setUp(self):
        self.op_type = "tanh_shrink"
189 190 191 192 193 194 195
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [10, 17]).astype(self.dtype)
        out = x - np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
196 197

    def test_check_grad(self):
198 199
        if self.dtype == np.float16:
            return
200
        self.check_grad(['X'], 'Out')
K
Kavya Srinet 已提交
201

202

C
chengduo 已提交
203
class TestHardShrink(TestActivation):
204 205
    def setUp(self):
        self.op_type = "hard_shrink"
206 207
        self.init_dtype()

208
        threshold = 0.5
Z
zhupengyang 已提交
209
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) * 10
210 211
        out = np.copy(x)
        out[(out >= -threshold) & (out <= threshold)] = 0
212 213

        self.attrs = {'lambda': threshold}
214 215
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
216 217

    def test_check_grad(self):
218 219
        if self.dtype == np.float16:
            return
220
        self.check_grad(['X'], 'Out')
221 222


223 224 225 226 227 228 229 230 231 232 233 234 235
class TestHardShrinkOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hard_shrink, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.hard_shrink, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.hard_shrink(x_fp16)


C
chengduo 已提交
236
class TestSoftShrink(TestActivation):
237 238
    def setUp(self):
        self.op_type = "softshrink"
239 240
        self.init_dtype()

241
        lambda_val = 0.1
Z
zhupengyang 已提交
242
        x = np.random.uniform(0.25, 10, [10, 12]).astype(self.dtype)
243 244 245 246
        out = np.copy(x)
        out = (out < -lambda_val) * (out + lambda_val) + (out > lambda_val) * (
            out - lambda_val)

247
        self.attrs = {'lambda': lambda_val}
248 249
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
250 251

    def test_check_grad(self):
252 253
        if self.dtype == np.float16:
            return
254
        self.check_grad(['X'], 'Out')
255

256

257 258 259 260 261 262 263 264 265 266 267 268 269
class TestSoftShrinkOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.softshrink, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.softshrink, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.softshrink(x_fp16)


270
class TestSqrt(TestActivation, TestParameter):
271 272
    def setUp(self):
        self.op_type = "sqrt"
273 274 275 276 277 278 279
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
280 281

    def test_check_grad(self):
282 283
        if self.dtype == np.float16:
            return
284
        self.check_grad(['X'], 'Out')
285

286

Z
zhoukunsheng 已提交
287 288 289 290 291
class TestRsqrt(TestActivation):
    def setUp(self):
        self.op_type = "rsqrt"
        self.init_dtype()

Z
zhupengyang 已提交
292
        x = np.random.uniform(0.1, 1, [10, 12]).astype(self.dtype) * 10
Z
zhoukunsheng 已提交
293 294 295 296 297 298 299 300 301 302 303
        out = 1.0 / np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.0005)


C
chengduo 已提交
304
class TestAbs(TestActivation):
305 306
    def setUp(self):
        self.op_type = "abs"
307 308
        self.init_dtype()

309
        x = np.random.uniform(-1, 1, [4, 25]).astype(self.dtype)
C
chengduo 已提交
310
        # Because we set delta = 0.005 in calculating numeric gradient,
Q
qijun 已提交
311
        # if x is too small, such as 0.002, x_neg will be -0.003
C
chengduo 已提交
312
        # x_pos will be 0.007, so the numeric gradient is inaccurate.
Q
qijun 已提交
313 314
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
315 316 317 318
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
319 320

    def test_check_grad(self):
321 322
        if self.dtype == np.float16:
            return
323
        self.check_grad(['X'], 'Out')
324

325

C
chengduo 已提交
326
class TestCeil(TestActivation):
D
dzhwinter 已提交
327 328
    def setUp(self):
        self.op_type = "ceil"
329 330
        self.init_dtype()

Z
zhupengyang 已提交
331
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
332 333 334 335
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
336

D
dzhwinter 已提交
337
    # The same reason with TestFloor
C
chengduo 已提交
338
    def test_check_grad(self):
339 340 341
        pass


C
chengduo 已提交
342
class TestFloor(TestActivation):
D
dzhwinter 已提交
343 344
    def setUp(self):
        self.op_type = "floor"
345 346
        self.init_dtype()

Z
zhupengyang 已提交
347
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
348 349 350 351
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
352

D
dzhwinter 已提交
353
    # the gradient on floor, ceil, round is undefined.
354
    # we return zero as gradient, but the numpy return nan
C
chengduo 已提交
355 356
    # The same reason with TestFloor
    def test_check_grad(self):
357 358 359
        pass


C
chengduo 已提交
360
class TestCos(TestActivation):
C
add cos  
chengduoZH 已提交
361 362
    def setUp(self):
        self.op_type = "cos"
363 364
        self.init_dtype()

Z
zhupengyang 已提交
365
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
366 367 368 369
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
370 371

    def test_check_grad(self):
372 373
        if self.dtype == np.float16:
            return
374
        self.check_grad(['X'], 'Out')
C
add sin  
chengduoZH 已提交
375

376

377 378 379 380 381
class TestAcos(TestActivation):
    def setUp(self):
        self.op_type = "acos"
        self.init_dtype()

Z
zhupengyang 已提交
382
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
383 384 385 386 387 388 389 390
        out = np.arccos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
391
        self.check_grad(['X'], 'Out')
392 393


394
class TestSin(TestActivation, TestParameter):
C
add sin  
chengduoZH 已提交
395 396
    def setUp(self):
        self.op_type = "sin"
397 398
        self.init_dtype()

Z
zhupengyang 已提交
399
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
400 401 402 403
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
404 405

    def test_check_grad(self):
406 407
        if self.dtype == np.float16:
            return
408
        self.check_grad(['X'], 'Out')
C
add cos  
chengduoZH 已提交
409 410


411 412 413 414 415
class TestAsin(TestActivation):
    def setUp(self):
        self.op_type = "asin"
        self.init_dtype()

Z
zhupengyang 已提交
416
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
417 418 419 420 421 422 423 424
        out = np.arcsin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
425
        self.check_grad(['X'], 'Out')
426 427


C
chengduo 已提交
428
class TestRound(TestActivation):
D
dzhwinter 已提交
429 430
    def setUp(self):
        self.op_type = "round"
431 432
        self.init_dtype()

Z
zhupengyang 已提交
433
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
434 435 436 437
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
438

C
chengduo 已提交
439
    def test_check_grad(self):
440 441 442
        pass


C
chengduo 已提交
443
class TestRelu(TestActivation):
444
    def setUp(self):
Q
qijun 已提交
445
        self.op_type = "relu"
K
Kexin Zhao 已提交
446 447 448
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
Q
qijun 已提交
449 450
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
K
Kexin Zhao 已提交
451 452 453 454
        out = np.maximum(x, 0)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
455 456

    def test_check_grad(self):
K
Kexin Zhao 已提交
457 458
        if self.dtype == np.float16:
            return
459
        self.check_grad(['X'], 'Out')
A
Adam 已提交
460 461


462 463 464 465
class TestReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
466
            self.assertRaises(TypeError, fluid.layers.relu, 1)
467 468 469 470 471 472 473 474 475
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.relu(x_fp16)


A
Adam 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
class TestLeakyRelu(TestActivation):
    def setUp(self):
        self.op_type = "leaky_relu"
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        out = np.maximum(x, 0.02 * x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
492
        self.check_grad(['X'], 'Out')
493 494


495 496 497 498 499 500 501 502 503 504 505 506 507 508
class TestLeakyReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.leaky_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.leaky_relu, x_int32)
            # support the input dtype is float32
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float32')
            fluid.layers.leaky_relu(x_fp16)


509 510 511 512 513 514 515 516 517 518
def gelu(x, approximate):
    if approximate:
        y_ref = 0.5 * x * (1.0 + np.tanh(
            np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
    else:
        y_ref = 0.5 * x * (1 + erf(x / np.sqrt(2)))
    return y_ref.astype(x.dtype)


class TestGeluApproximate(TestActivation):
C
Clementine 已提交
519 520 521
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
522 523 524
        approximate = True
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = gelu(x, approximate)
C
Clementine 已提交
525

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
        self.attrs = {"approximate": approximate}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestGelu(TestActivation):
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
        approximate = False
C
Clementine 已提交
541
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
542
        out = gelu(x, approximate)
C
Clementine 已提交
543 544 545

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
546
        self.attrs = {"approximate": approximate}
C
Clementine 已提交
547 548 549 550

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
551
        self.check_grad(['X'], 'Out')
C
Clementine 已提交
552 553


C
chengduo 已提交
554
class TestBRelu(TestActivation):
555 556
    def setUp(self):
        self.op_type = "brelu"
557 558
        self.init_dtype()

Z
zhupengyang 已提交
559
        x = np.random.uniform(-5, 10, [10, 12]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
560 561
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
562 563
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
564
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
565 566 567
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
568 569 570

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
571
        self.outputs = {'Out': t}
572 573

    def test_check_grad(self):
574 575
        if self.dtype == np.float16:
            return
576
        self.check_grad(['X'], 'Out')
577

578

579 580 581 582 583 584 585 586 587 588 589 590 591 592
class TestBReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.brelu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.brelu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.brelu(x_fp16)


C
chengduo 已提交
593
class TestRelu6(TestActivation):
K
Kavya Srinet 已提交
594
    def setUp(self):
595
        self.op_type = "relu6"
596 597
        self.init_dtype()

Z
zhupengyang 已提交
598
        x = np.random.uniform(-1, 10, [10, 12]).astype(self.dtype)
599 600 601 602
        threshold = 6.0
        # The same with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
603
        out = np.minimum(np.maximum(x, 0), threshold)
604

605
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
606
        self.attrs = {'threshold': threshold}
607
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
608

609 610 611
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
612
        self.check_grad(['X'], 'Out')
613 614


615 616 617 618 619 620 621 622 623 624 625 626 627
class TestRelu6OpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.relu6, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.relu6, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.relu6(x_fp16)


H
huangjun12 已提交
628 629 630 631 632
class TestHardSwish(TestActivation):
    def setUp(self):
        self.op_type = 'hard_swish'
        self.init_dtype()

Z
zhupengyang 已提交
633
        x = np.random.uniform(-6, 6, [10, 12]).astype(self.dtype)
H
huangjun12 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
        threshold = 6.0
        scale = 6.0
        offset = 3.0
        #the same with TestAbs
        x[np.abs(x + offset) < 0.005] = 0.02
        x[np.abs(x - threshold + offset) < 0.005] = threshold - offset + 0.02
        out = x * np.minimum(np.maximum(x + offset, 0), threshold) / scale

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold, 'scale': scale, 'offset': offset}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
649
        self.check_grad(['X'], 'Out')
H
huangjun12 已提交
650 651


652 653 654 655 656 657 658 659 660 661 662 663 664
class TestHardSwishOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hard_swish, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.hard_swish, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.hard_swish(x_fp16)


C
chengduo 已提交
665
class TestSoftRelu(TestActivation):
666 667
    def setUp(self):
        self.op_type = "soft_relu"
668 669 670
        self.init_dtype()

        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
671
        threshold = 2.0
Q
qijun 已提交
672 673
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
Z
zhupengyang 已提交
674
        x[np.abs(x + threshold) < 0.005] = -threshold - 0.02
675 676 677
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
678 679 680 681 682
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
683 684

    def test_check_grad(self):
685 686
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
687
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
688

689

690 691 692 693 694 695 696 697 698 699 700 701 702
class TestSoftReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.soft_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.soft_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.soft_relu(x_fp16)


C
chengduo 已提交
703
class TestELU(TestActivation):
704 705
    def setUp(self):
        self.op_type = "elu"
706 707
        self.init_dtype()

Z
zhupengyang 已提交
708
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
709
        alpha = 1.
710
        out = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1))
711 712 713 714
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
715
        self.outputs = {'Out': out}
716 717

    def test_check_grad(self):
718 719
        if self.dtype == np.float16:
            return
720
        self.check_grad(['X'], 'Out')
721 722


723
class TestELUOpError(unittest.TestCase):
724 725 726 727 728 729 730 731 732 733 734
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of elu_op must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.elu, x1)
            # The input dtype of elu_op must be float16 float32 or float64.
            x2 = fluid.layers.data(name='x2', shape=[4], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.elu, x2)


C
chengduo 已提交
735
class TestReciprocal(TestActivation):
Q
qijun 已提交
736 737
    def setUp(self):
        self.op_type = "reciprocal"
738 739 740 741 742 743 744
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
745 746

    def test_check_grad(self):
747 748
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
749
        self.check_grad(['X'], 'Out', max_relative_error=0.01)
Q
qijun 已提交
750 751


C
chengduo 已提交
752
class TestLog(TestActivation):
Q
qijun 已提交
753 754
    def setUp(self):
        self.op_type = "log"
755 756 757 758 759 760 761
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
762 763

    def test_check_grad(self):
764 765
        if self.dtype == np.float16:
            return
766
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
767

768 769 770 771 772 773 774 775 776
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")

        self.assertRaises(TypeError, fluid.layers.log, in1)
        self.assertRaises(TypeError, fluid.layers.log, in2)

777

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
class TestLog1p(TestActivation):
    def setUp(self):
        self.op_type = "log1p"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log1p(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.layers.data(
                name="data_x",
                shape=[11, 17],
                append_batch_size=False,
                dtype="float64")
            res_log1p = fluid.layers.data(
                name="res_log1p",
                shape=[11, 17],
                append_batch_size=False,
                dtype="float64")

            out1 = paddle.log1p(data_x)
            out2 = paddle.log1p(data_x, out=res_log1p)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            res1, res_in = exe.run(fluid.default_main_program(),
                                   feed={"data_x": input_x},
                                   fetch_list=[out1, res_log1p])
        expected_res = np.log1p(input_x)
        np.testing.assert_allclose(res1, expected_res)
        np.testing.assert_allclose(res_in, expected_res)

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.dygraph.to_variable(np_x)
            z = paddle.log1p(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log1p(np_x))
        np.testing.assert_allclose(np_z, z_expected)


C
chengduo 已提交
829
class TestSquare(TestActivation):
Q
qijun 已提交
830 831
    def setUp(self):
        self.op_type = "square"
832 833 834 835 836 837 838
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
839 840

    def test_check_grad(self):
841 842
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
843
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
844

845

C
chengduo 已提交
846
class TestPow(TestActivation):
847 848
    def setUp(self):
        self.op_type = "pow"
849 850 851 852 853 854
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
855
        self.attrs = {'factor': 3.0}
856
        self.outputs = {'Out': out}
857 858

    def test_check_grad(self):
859 860
        if self.dtype == np.float16:
            return
861
        self.check_grad(['X'], 'Out')
862

863

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
class TestPow_factor_tensor(TestActivation):
    def setUp(self):
        self.op_type = "pow"
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(x),
            'FactorTensor': np.array([3.0]).astype("float32")
        }

        self.attrs = {}
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
886
        self.check_grad(['X'], 'Out')
887 888 889 890 891

    def test_api(self):
        input = np.random.uniform(1, 2, [11, 17]).astype("float32")
        x = fluid.layers.data(
            name="x", shape=[11, 17], append_batch_size=False, dtype="float32")
892 893 894 895 896
        res = fluid.layers.data(
            name="res",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
897 898 899 900 901

        factor_1 = 2.0
        factor_2 = fluid.layers.fill_constant([1], "float32", 3.0)
        out_1 = fluid.layers.pow(x, factor=factor_1)
        out_2 = fluid.layers.pow(x, factor=factor_2)
902 903 904 905 906
        out_3 = paddle.pow(x, factor_1, out=res)
        out_4 = paddle.pow(x, factor_1, name='pow_res')
        out_5 = paddle.pow(x, factor_1, out=res, name='pow_res')
        out_6 = paddle.pow(x, factor_2)
        self.assertEqual(('pow_res' in out_4.name), True)
907 908

        exe = fluid.Executor(place=fluid.CPUPlace())
909 910 911 912
        res_1, res_2, res_3, res, res_6 = exe.run(
            fluid.default_main_program(),
            feed={"x": input},
            fetch_list=[out_1, out_2, out_3, res, out_6])
913 914 915

        assert np.array_equal(res_1, np.power(input, 2))
        assert np.array_equal(res_2, np.power(input, 3))
916 917
        assert np.array_equal(res_3, res)
        assert np.array_equal(res_6, np.power(input, 3))
918

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")
        in3 = fluid.layers.data(
            name="in3",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
        in4 = fluid.layers.data(
            name="in4",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float64")

        factor_1 = fluid.layers.fill_constant([1], "float64", 3.0)

        self.assertRaises(TypeError, fluid.layers.pow, x=in1, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in2, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in3, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in4, factor=factor_1)

942

C
chengduo 已提交
943
class TestSTanh(TestActivation):
944 945
    def setUp(self):
        self.op_type = "stanh"
946 947 948
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
949 950
        scale_a = 2.0 / 3.0
        scale_b = 1.7159
951 952 953
        out = scale_b * np.tanh(x * scale_a)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
954
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
955
        self.outputs = {'Out': out}
956

Q
qijun 已提交
957
    def test_check_grad(self):
958 959
        if self.dtype == np.float16:
            return
960
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
961

962

963 964 965 966 967 968 969 970 971 972 973 974 975
class TestSTanhOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.stanh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.stanh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.stanh(x_fp16)


C
chengduo 已提交
976
class TestSoftplus(TestActivation):
K
kexinzhao 已提交
977 978
    def setUp(self):
        self.op_type = "softplus"
979
        self.init_dtype()
C
chengduo 已提交
980
        self.dtype = np.float64
981 982 983 984 985 986

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 + np.exp(x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
K
kexinzhao 已提交
987 988

    def test_check_grad(self):
989 990
        if self.dtype == np.float16:
            return
991
        self.check_grad(['X'], 'Out')
K
kexinzhao 已提交
992

993

C
chengduo 已提交
994
class TestSoftsign(TestActivation):
995 996
    def setUp(self):
        self.op_type = "softsign"
997 998 999 1000 1001 1002 1003
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.divide(x, 1 + np.abs(x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
1004 1005

    def test_check_grad(self):
1006 1007
        if self.dtype == np.float16:
            return
1008
        self.check_grad(['X'], 'Out')
1009 1010


C
chengduo 已提交
1011
class TestThresholdedRelu(TestActivation):
1012 1013
    def setUp(self):
        self.op_type = "thresholded_relu"
1014 1015
        self.init_dtype()

1016
        threshold = 0.25
Z
zhupengyang 已提交
1017
        self.delta = 0.005
1018
        X = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
1019 1020

        # Same reason as TestAbs
Z
zhupengyang 已提交
1021
        X[np.abs(X - threshold) < self.delta] = threshold + 0.2
1022
        out = (X > threshold) * X
1023

1024
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
1025
        self.attrs = {'threshold': threshold}
1026
        self.outputs = {'Out': out}
1027 1028

    def test_check_grad(self):
1029 1030
        if self.dtype == np.float16:
            return
1031
        self.check_grad(['X'], 'Out')
1032 1033


1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
class TestThresholdedReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.thresholded_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.thresholded_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.thresholded_relu(x_fp16)


C
chengduo 已提交
1047
class TestHardSigmoid(TestActivation):
1048 1049
    def setUp(self):
        self.op_type = "hard_sigmoid"
1050 1051
        self.init_dtype()

Z
zhupengyang 已提交
1052
        X = np.random.uniform(-5, 5, [10, 12]).astype("float32")
1053 1054 1055 1056 1057
        slope = 0.2
        offset = 0.5
        lower_threshold = -offset / slope
        upper_threshold = (1 - offset) / slope

Z
zhupengyang 已提交
1058 1059
        self.delta = 0.005

1060
        # Same reason as TestAbs
Z
zhupengyang 已提交
1061 1062
        X[(X - lower_threshold) < self.delta] = lower_threshold - 0.02
        X[(X - upper_threshold) < self.delta] = upper_threshold + 0.02
1063 1064

        temp = X * slope + offset
1065 1066 1067 1068
        out = np.maximum(0.0, np.minimum(1.0, temp))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
        self.outputs = {'Out': out}
1069 1070

    def test_check_grad(self):
1071 1072
        if self.dtype == np.float16:
            return
Z
zhupengyang 已提交
1073
        self.check_grad(['X'], 'Out')
1074

1075

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
class TestHardSigmoidOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hard_sigmoid, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.hard_sigmoid, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.hard_sigmoid(x_fp16)


C
chengduo 已提交
1089
class TestSwish(TestActivation):
A
Abhinav Arora 已提交
1090 1091
    def setUp(self):
        self.op_type = "swish"
1092 1093 1094 1095 1096 1097 1098 1099 1100
        self.init_dtype()

        X = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        beta = 2.3
        out = X * expit(beta * X)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
        self.attrs = {'beta': beta}
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
1101 1102

    def test_check_grad(self):
1103 1104
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1105
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
A
Abhinav Arora 已提交
1106

1107

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
class TestSwishOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.swish, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.swish, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.swish(x_fp16)


1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
#------------------ Test Error Activation----------------------
def create_test_error_class(op_type):
    class TestOpErrors(unittest.TestCase):
        def test_errors(self):
            with program_guard(Program(), Program()):
                op = getattr(fluid.layers, op_type)
                # The input dtype of op_type must be float32, float64.
                in1 = fluid.layers.data(
                    name='input2', shape=[12, 10], dtype="int32")
                in2 = fluid.layers.data(
                    name='input3', shape=[12, 10], dtype="int64")
                self.assertRaises(TypeError, op, in1)
                self.assertRaises(TypeError, op, in2)

    cls_name = "{0}_{1}".format(op_type, "test_errors")
    TestOpErrors.__name__ = cls_name
    globals()[cls_name] = TestOpErrors


create_test_error_class('acos')
create_test_error_class('asin')
create_test_error_class('atan')
create_test_error_class('ceil')
create_test_error_class('cos')
create_test_error_class('floor')
create_test_error_class('reciprocal')
create_test_error_class('round')
create_test_error_class('rsqrt')
create_test_error_class('sin')
create_test_error_class('sqrt')
create_test_error_class('tanh')


1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
#------------------ Test Cudnn Activation----------------------
def create_test_act_cudnn_class(parent, atol=1e-3, grad_atol=1e-3):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActCudnn(parent):
        def init_kernel_type(self):
            self.attrs = {"use_cudnn": True}

    cls_name = "{0}_{1}".format(parent.__name__, "cudnn")
    TestActCudnn.__name__ = cls_name
    globals()[cls_name] = TestActCudnn


create_test_act_cudnn_class(TestRelu)
create_test_act_cudnn_class(TestRelu6)
create_test_act_cudnn_class(TestSigmoid)
create_test_act_cudnn_class(TestTanh)


C
chengduo 已提交
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
#------------------ Test Fp16 ----------------------
def create_test_act_fp16_class(parent,
                               atol=1e-3,
                               grad_check=True,
                               grad_atol=0.80):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActFp16(parent):
        def init_dtype(self):
            self.dtype = np.float16
1183

C
chengduo 已提交
1184
        def test_check_output(self):
1185
            place = core.CUDAPlace(0)
C
chengduo 已提交
1186 1187 1188
            support_fp16 = core.is_float16_supported(place)
            if support_fp16:
                self.check_output_with_place(place, atol=atol)
1189

C
chengduo 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
        def test_check_grad(self):
            place = core.CUDAPlace(0)
            support_fp16 = core.is_float16_supported(place)
            if support_fp16 and grad_check:
                self.check_grad_with_place(
                    place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "fp16")
    TestActFp16.__name__ = cls_name
    globals()[cls_name] = TestActFp16


create_test_act_fp16_class(TestActivation)
create_test_act_fp16_class(TestSigmoid)
create_test_act_fp16_class(TestLogSigmoid)
create_test_act_fp16_class(TestTanh)
create_test_act_fp16_class(TestTanhShrink)
create_test_act_fp16_class(TestHardShrink)
create_test_act_fp16_class(TestSoftShrink)
create_test_act_fp16_class(TestSqrt)
create_test_act_fp16_class(TestAbs)
create_test_act_fp16_class(TestCeil, grad_check=False)
create_test_act_fp16_class(TestFloor, grad_check=False)
create_test_act_fp16_class(TestCos, grad_atol=0.85)
1214
create_test_act_fp16_class(TestAcos, grad_atol=0.85)
C
chengduo 已提交
1215
create_test_act_fp16_class(TestSin)
1216 1217
create_test_act_fp16_class(TestAsin)
create_test_act_fp16_class(TestAtan)
C
chengduo 已提交
1218 1219
create_test_act_fp16_class(TestRound, grad_check=False)
create_test_act_fp16_class(TestRelu)
C
Clementine 已提交
1220
create_test_act_fp16_class(TestGelu)
C
chengduo 已提交
1221 1222 1223 1224 1225 1226
create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class(TestRelu6)
create_test_act_fp16_class(TestSoftRelu)
create_test_act_fp16_class(TestELU)
create_test_act_fp16_class(TestReciprocal)
create_test_act_fp16_class(TestLog)
1227
create_test_act_fp16_class(TestLog1p, grad_atol=0.9)
C
chengduo 已提交
1228 1229
create_test_act_fp16_class(TestSquare)
create_test_act_fp16_class(TestPow, atol=5e-2)
1230
create_test_act_fp16_class(TestPow_factor_tensor, atol=5e-2)
C
chengduo 已提交
1231 1232 1233 1234 1235 1236
create_test_act_fp16_class(TestSTanh, grad_atol=0.9)
create_test_act_fp16_class(TestSoftplus)
create_test_act_fp16_class(TestSoftsign)
create_test_act_fp16_class(TestThresholdedRelu)
create_test_act_fp16_class(TestHardSigmoid)
create_test_act_fp16_class(TestSwish)
H
huangjun12 已提交
1237
create_test_act_fp16_class(TestHardSwish)
A
Abhinav Arora 已提交
1238

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307

class TestNNReluAPI(unittest.TestCase):
    def setUp(self):
        self.init_data()

    def init_data(self):
        self.x_shape = [10, 12]
        self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
        self.y = self.ref_forward(self.x)

    def ref_forward(self, x):
        return np.maximum(x, 0)

    def ref_backward(self, y, dy):
        y_t = y.copy()
        y_t[y_t > 0] = 1
        return y_t * dy

    def check_api(self, place=fluid.CPUPlace(), inplace=False):
        main_program = Program()
        myrelu = nn.ReLU(inplace)
        with fluid.program_guard(main_program):
            x = fluid.data(name='x', shape=self.x_shape)
            x.stop_gradient = False
            y = myrelu(x)
            fluid.backward.append_backward(fluid.layers.mean(y))
        exe = fluid.Executor(place)
        out = exe.run(main_program,
                      feed={'x': self.x},
                      fetch_list=[y, y.grad_name, x.grad_name])
        self.assertTrue(np.allclose(out[0], self.y))
        self.assertTrue(np.allclose(out[2], self.ref_backward(self.y, out[1])))

        with fluid.dygraph.guard(place):
            x = fluid.dygraph.to_variable(self.x)
            y = myrelu(x)
        self.assertTrue(np.allclose(y.numpy(), self.y))

    def test_check_api(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            for inplace in [True, False]:
                self.check_api(place, inplace)


class TestNNFunctionalReluAPI(unittest.TestCase):
    def setUp(self):
        self.init_data()

    def init_data(self):
        self.x_shape = [10, 12]
        self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
        self.y = self.ref_forward(self.x)

    def ref_forward(self, x):
        return np.maximum(x, 0)

    def test_check_api(self):
        main_program = Program()
        with fluid.program_guard(main_program):
            x = fluid.data(name='x', shape=self.x_shape)
            y = functional.relu(x)
        exe = fluid.Executor(fluid.CPUPlace())
        out = exe.run(main_program, feed={'x': self.x}, fetch_list=[y])
        self.assertTrue(np.allclose(out[0], self.y))


1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
class TestNNSigmoidAPI(unittest.TestCase):
    def setUp(self):
        self.init_data()

    def init_data(self):
        self.x_shape = [10, 15]
        self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
        self.y = self.ref_forward(self.x)

    def ref_forward(self, x):
        return 1 / (1 + np.exp(-x))

    def ref_backward(self, y, dy):
        return dy * y * (1 - y)

    def check_api(self, place=fluid.CPUPlace(), inplace=False):
        main_program = Program()
        mysigmoid = nn.Sigmoid(inplace)
        with fluid.program_guard(main_program):
            x = fluid.data(name='x', shape=self.x_shape)
            x.stop_gradient = False
            y = mysigmoid(x)
            fluid.backward.append_backward(fluid.layers.mean(y))
        exe = fluid.Executor(place)
        out = exe.run(main_program,
                      feed={'x': self.x},
                      fetch_list=[y, y.grad_name, x.grad_name])
        self.assertTrue(np.allclose(out[0], self.y))
        self.assertTrue(np.allclose(out[2], self.ref_backward(self.y, out[1])))

        with fluid.dygraph.guard(place):
            x = fluid.dygraph.to_variable(self.x)
            y = mysigmoid(x)
        self.assertTrue(np.allclose(y.numpy(), self.y))

    def test_check_api(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            for inplace in [True, False]:
                self.check_api(place, inplace)


class TestNNFunctionalSigmoidAPI(unittest.TestCase):
    def setUp(self):
        self.init_data()

    def init_data(self):
        self.x_shape = [10, 15]
        self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
        self.y = self.ref_forward(self.x)

    def ref_forward(self, x):
        return 1 / (1 + np.exp(-x))

    def test_check_api(self):
        main_program = Program()
        with fluid.program_guard(main_program):
            x = fluid.data(name='x', shape=self.x_shape)
            y = functional.sigmoid(x)
        exe = fluid.Executor(fluid.CPUPlace())
        out = exe.run(main_program, feed={'x': self.x}, fetch_list=[y])
        self.assertTrue(np.allclose(out[0], self.y))


Q
qijun 已提交
1374 1375
if __name__ == "__main__":
    unittest.main()