pybind.cc 16.9 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
Luo Tao 已提交
15
#include <Python.h>
Y
Yu Yang 已提交
16
#include <fstream>
Y
Yu Yang 已提交
17
#include <vector>
18

Q
Qiao Longfei 已提交
19
#include "paddle/framework/backward.h"
D
dangqingqing 已提交
20
#include "paddle/framework/lod_tensor.h"
Y
Yu Yang 已提交
21
#include "paddle/framework/op_registry.h"
Z
zchen0211 已提交
22
#include "paddle/operators/cond_op.h"
Y
Yan Chunwei 已提交
23
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
24
#include "paddle/operators/recurrent_op.h"
Q
qijun 已提交
25
#include "paddle/platform/enforce.h"
Q
qijun 已提交
26
#include "paddle/platform/place.h"
L
Luo Tao 已提交
27
#include "paddle/pybind/pybind.h"
28
#include "paddle/pybind/tensor_py.h"
29
#include "paddle/string/to_string.h"
Y
Yu Yang 已提交
30 31 32 33
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"

34 35
namespace py = pybind11;

36 37
namespace paddle {
namespace framework {
D
dongzhihong 已提交
38 39

using Tensor = framework::Tensor;
40 41
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;
D
dongzhihong 已提交
42

43 44 45 46 47
static size_t UniqueIntegerGenerator() {
  static std::atomic<size_t> generator;
  return generator.fetch_add(1);
}

Q
qijun 已提交
48 49 50 51 52 53 54 55
bool IsCompileGPU() {
#ifdef PADDLE_ONLY_CPU
  return false;
#else
  return true;
#endif
}

Y
Yu Yang 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
template <typename T>
inline std::vector<T> RepeatedToVector(
    const google::protobuf::RepeatedField<T> &repeated_field) {
  std::vector<T> ret;
  ret.reserve(repeated_field.size());
  std::copy(
      repeated_field.begin(), repeated_field.end(), std::back_inserter(ret));
  return ret;
}

template <typename T, typename RepeatedField>
inline void VectorToRepeated(const std::vector<T> &vec,
                             RepeatedField *repeated_field) {
  repeated_field->Reserve(vec.size());
  for (auto &elem : vec) {
    *repeated_field->Add() = elem;
  }
}

75
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
76
  py::module m("core", "C++ core of PaddlePaddle");
77

78 79 80
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
81
      .def("get_dims",
82
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
83
      .def("set_dims",
Q
qijun 已提交
84
           [](Tensor &self, const std::vector<int64_t> &dim) {
85
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
86 87
           })
      .def("alloc_float",
Y
Yu Yang 已提交
88
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
89
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
90
           })
Q
qijun 已提交
91
      .def("alloc_float",
Y
Yu Yang 已提交
92
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
93
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
94 95
           })
      .def("alloc_int",
Y
Yu Yang 已提交
96
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
97
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
98
           })
Q
qijun 已提交
99
      .def("alloc_int",
Y
Yu Yang 已提交
100
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
101
             self.mutable_data<int>(place);
Q
qijun 已提交
102
           })
Y
Yu Yang 已提交
103 104
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
Q
qijun 已提交
105
#ifndef PADDLE_ONLY_CPU
Y
Yu Yang 已提交
106 107
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
Q
qijun 已提交
108
#endif
109
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
110
      .def("set_float_element",
111
           [](Tensor &self, size_t offset, float f) {
Y
Yu Yang 已提交
112
             // TODO(yuyang18): Only support GPU now.
Y
Yu Yang 已提交
113 114
             self.data<float>()[offset] = f;
           })
115
      .def("get_float_element", [](Tensor &self, size_t offset) -> float {
Y
Yu Yang 已提交
116
        // TODO(yuyang18): Only support GPU now.
Y
Yu Yang 已提交
117 118
        return self.data<float>()[offset];
      });
Y
Yu Yang 已提交
119

120
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
121 122
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
123 124 125
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
126
#ifdef PADDLE_ONLY_CPU
127
            new (&instance) LoDTensor(lod);
128 129 130 131
#else
             paddle::framework::LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
132
             new (&instance) LoDTensor(new_lod);
133
#endif
134
          })
D
dangqingqing 已提交
135
      .def("set_lod",
136
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
137
#ifdef PADDLE_ONLY_CPU
D
dangqingqing 已提交
138
             self.set_lod(lod);
139 140 141 142 143 144
#else
             paddle::framework::LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
145
           })
146 147
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
#ifdef PADDLE_ONLY_CPU
D
dangqingqing 已提交
148
        return self.lod();
149 150 151 152 153 154 155 156 157 158 159 160 161 162
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
               [](paddle::framework::Vector<size_t> item) ->
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
163 164
      });

165
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
166 167 168

All parameter, weight, gradient are variables in Paddle.
)DOC")
169
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
170
      .def("set_int",
171 172
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
Y
Yu Yang 已提交
173
      .def("get_tensor",
174 175
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
176 177
           },
           py::return_value_policy::reference)
Y
Yan Chunwei 已提交
178
      .def("get_net",
D
dongzhihong 已提交
179 180
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
181
           },
Y
Yu Yang 已提交
182
           py::return_value_policy::reference);
183

184
  py::class_<Scope>(m, "Scope", "")
Y
Yu Yang 已提交
185
      .def("new_var",
186
           [](Scope &self, const std::string &name) -> Variable * {
Y
Yu Yang 已提交
187 188
             return self.NewVar(name);
           },
189
           py::return_value_policy::reference)
190
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
191
      .def(py::init<>())
192 193
      .def("new_scope",
           [](Scope &self) -> Scope * { return &self.NewScope(); },
194
           py::return_value_policy::reference)
195
      .def("drop_kids", &Scope::DropKids);
196

Y
Yu Yang 已提交
197 198
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
199 200
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
Y
Yu Yang 已提交
201 202 203 204

    OpInfoMap::Instance().IterAllInfo([&ret_values](const std::string &type,
                                                    const OpInfo &info) {
      if (!info.HasOpProtoAndChecker()) return;
Y
Yu Yang 已提交
205
      std::string str;
Y
Yu Yang 已提交
206
      PADDLE_ENFORCE(info.Proto().SerializeToString(&str),
Y
Yu Yang 已提交
207
                     "Serialize OpProto Error. This could be a bug of Paddle.");
Y
Yu Yang 已提交
208 209
      ret_values.emplace_back(str);
    });
Y
Yu Yang 已提交
210 211
    return ret_values;
  });
212 213 214
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
215 216
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
217
  // clang-format off
Y
Yu Yang 已提交
218
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
219 220
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
221
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
222 223 224 225 226
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
227
#ifdef PADDLE_ONLY_CPU
Q
qijun 已提交
228
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
229
#else
Q
qijun 已提交
230
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
231
#endif
Q
qijun 已提交
232
                  });
Q
qijun 已提交
233
  // clang-format on
Q
qijun 已提交
234

235 236 237
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
238

239 240 241
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
242

Y
Yu Yang 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
                    return OpRegistry::CreateOp(desc);
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
      .def("infer_shape", &OperatorBase::InferShape)
      .def("run", &OperatorBase::Run)
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
268 269
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
270
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
271
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
272 273 274 275
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
276

Y
Yu Yang 已提交
277 278 279 280 281 282 283
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
284 285 286 287
      .def("append_op",
           [](operators::NetOp &self, const OperatorBase &op) {
             self.AppendOp(op);
           })
D
dongzhihong 已提交
288 289 290 291
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
292

Y
Yan Chunwei 已提交
293
  // recurrent_op
Y
Yu Yang 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306
  py::class_<operators::RecurrentOp, OperatorBase>(m, "RecurrentOp")
      .def_static(
          "create",
          [](py::bytes protobin) -> operators::RecurrentOp * {
            OpDesc desc;
            PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                           "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE(desc.IsInitialized(),
                           "User OpDesc is not initialized, reason %s",
                           desc.InitializationErrorString());
            auto rnn_op = OpRegistry::CreateOp(desc);
            return static_cast<operators::RecurrentOp *>(rnn_op.release());
          })
307 308 309
      .def("set_stepnet",
           [](operators::RecurrentOp &self, const operators::NetOp &net)
               -> void { self.set_stepnet(net.Clone()); });
Y
Yan Chunwei 已提交
310

Z
cond op  
zchen0211 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
                    auto cond_op = OpRegistry::CreateOp(desc);
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

333 334
  m.def("unique_integer", UniqueIntegerGenerator);

Q
qijun 已提交
335 336
  m.def("is_compile_gpu", IsCompileGPU);

Y
Yu Yang 已提交
337
  py::class_<ProgramDesc>(m, "ProgramDesc", "")
Y
Update  
Yu Yang 已提交
338 339 340
      .def_static("instance",
                  [] { return &GetProgramDesc(); },
                  py::return_value_policy::reference)
Y
Yu Yang 已提交
341 342 343 344 345 346 347 348 349
      .def_static("__create_program_desc__",
                  [] {
                    // Only used for unit-test
                    auto *prog_desc = new ProgramDesc;
                    auto *block = prog_desc->mutable_blocks()->Add();
                    block->set_idx(0);
                    block->set_parent_idx(-1);
                    return prog_desc;
                  })
Y
Update  
Yu Yang 已提交
350 351
      .def("append_block",
           [](ProgramDesc &self, BlockDesc &parent) {
Y
Yu Yang 已提交
352
             auto desc = self.add_blocks();
Y
Update  
Yu Yang 已提交
353 354 355
             desc->set_idx(self.mutable_blocks()->size() - 1);
             desc->set_parent_idx(parent.idx());
             return desc;
Y
Yu Yang 已提交
356 357
           },
           py::return_value_policy::reference)
Y
Update  
Yu Yang 已提交
358
      .def("root_block",
Y
Yu Yang 已提交
359 360 361 362
           [](ProgramDesc &self) { return self.mutable_blocks()->Mutable(0); },
           py::return_value_policy::reference)
      .def("__str__", [](ProgramDesc &self) { return self.DebugString(); });

Y
Yu Yang 已提交
363
  py::class_<BlockDesc>(m, "BlockDesc", "")
Y
Yu Yang 已提交
364
      .def("id", [](BlockDesc &self) { return self.idx(); })
Y
Update  
Yu Yang 已提交
365
      .def("parent", [](BlockDesc &self) { return self.parent_idx(); })
F
Update  
fengjiayi 已提交
366 367 368 369 370 371
      .def("append_op",
           [](BlockDesc &self) { return self.add_ops(); },
           py::return_value_policy::reference)
      .def("new_var",
           [](BlockDesc &self) { return self.add_vars(); },
           py::return_value_policy::reference);
Y
Yu Yang 已提交
372

F
fengjiayi 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
  py::class_<VarDesc>(m, "VarDesc", "")
      .def(py::init<>())
      .def("set_name",
           [](VarDesc &self, const std::string &name) { self.set_name(name); })
      .def("set_shape",
           [](VarDesc &self, const std::vector<int64_t> &dims) {
             LoDTensorDesc *lod_tensor_desc = self.mutable_lod_tensor();
             for (const int64_t &i : dims) {
               lod_tensor_desc->add_dims(i);
             }
           })
      .def("set_data_type",
           [](VarDesc &self, int type_id) {
             LoDTensorDesc *lod_tensor_desc = self.mutable_lod_tensor();
             lod_tensor_desc->set_data_type(static_cast<DataType>(type_id));
           })
      .def("shape", [](VarDesc &self) {
        const LoDTensorDesc &lod_tensor_desc = self.lod_tensor();
        int rank = lod_tensor_desc.dims_size();
        std::vector<int64_t> res(rank);
        for (int i = 0; i < rank; ++i) {
          res[i] = lod_tensor_desc.dims(i);
        }
        return res;
      });
Y
Yu Yang 已提交
398

Y
Update  
Yu Yang 已提交
399 400 401 402
  auto op_desc_set_var = [](OpDesc::Var *var,
                            const std::string &parameter,
                            const std::vector<std::string> &arguments) {
    var->set_parameter(parameter);
Y
Yu Yang 已提交
403
    VectorToRepeated(arguments, var->mutable_arguments());
Y
Update  
Yu Yang 已提交
404 405 406
  };

  auto op_desc_set_attr = [](OpDesc &desc, const std::string &name) {
F
fengjiayi 已提交
407
    auto attr = desc.add_attrs();
Y
Update  
Yu Yang 已提交
408 409 410 411 412 413 414 415 416 417
    attr->set_name(name);
    return attr;
  };

  py::class_<OpDesc>(m, "OpDesc", "")
      .def("type", [](OpDesc &op) { return op.type(); })
      .def("set_input",
           [op_desc_set_var](OpDesc &self,
                             const std::string &parameter,
                             const std::vector<std::string> &arguments) {
F
fengjiayi 已提交
418
             auto ipt = self.add_inputs();
Y
Update  
Yu Yang 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
             op_desc_set_var(ipt, parameter, arguments);
           })
      .def("input_names",
           [](OpDesc &self) {
             std::vector<std::string> ret_val;
             ret_val.reserve(static_cast<size_t>(self.inputs().size()));
             std::transform(
                 self.inputs().begin(),
                 self.inputs().end(),
                 std::back_inserter(ret_val),
                 [](const OpDesc::Var &var) { return var.parameter(); });
             return ret_val;
           })
      .def("__str__", [](OpDesc &self) { return self.DebugString(); })
      .def("set_output",
           [op_desc_set_var](OpDesc &self,
                             const std::string &parameter,
                             const std::vector<std::string> &arguments) {
F
fengjiayi 已提交
437
             auto opt = self.add_outputs();
Y
Update  
Yu Yang 已提交
438 439 440 441 442 443
             op_desc_set_var(opt, parameter, arguments);
           })
      .def("set_attr",
           [op_desc_set_attr](OpDesc &self, const std::string &name, int i) {
             op_desc_set_attr(self, name)->set_i(i);
           });
Y
Yu Yang 已提交
444

445
  return m.ptr();
L
Luo Tao 已提交
446
}
447 448
}  // namespace framework
}  // namespace paddle