conv_transpose_mkldnn_op.cc 16.5 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "boost/optional.hpp"
J
Jacek Czaja 已提交
16 17 18
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/malloc.h"
19
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
20 21 22 23 24 25 26 27
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using framework::DataLayout;

28
inline dnnl::memory::dims GetWeightsTz(const Tensor* filter, const int groups) {
29
  auto weights_tz = framework::vectorize(filter->dims());
30
  int g = std::max(groups, 1);
31
  int g_dim = (g > 1) ? 1 : 0;
32
  platform::GetGroupConvWeightsTz(weights_tz, g);
33 34
  // gIOHW -> gOIHW || IOHW -> OIHW
  std::swap(weights_tz[g_dim + 0], weights_tz[g_dim + 1]);
35 36 37 38 39
  return weights_tz;
}

template <typename T, typename K, typename T_out>
class ConvTransposeMKLDNNHandlerT
40
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::deconvolution_forward> {
J
Jacek Czaja 已提交
41
 public:
42
  ConvTransposeMKLDNNHandlerT(const framework::ExecutionContext& ctx,
43
                              const dnnl::engine mkldnn_engine,
44 45
                              const Tensor* input, const Tensor* filter,
                              const Tensor* bias, Tensor* output)
46
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::deconvolution_forward>(
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
            mkldnn_engine, ctx.GetPlace()),
        is_test_(ctx.Attr<bool>("is_test")) {
    PADDLE_ENFORCE_EQ(is_test_, true,
                      platform::errors::InvalidArgument(
                          "ConvTransposeMKLDNN works only for inference. "
                          "The attribute \'is_test\' value should be set to "
                          "True, but got is_test=False."));

    PADDLE_ENFORCE_EQ(
        input->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "Got wrong layout = %d for Input tensor.", input->layout()));
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                      platform::errors::InvalidArgument(
                          "Got wrong format for Input tensor. The input "
                          "format is undefined."));

    PADDLE_ENFORCE_EQ(
        filter->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
67
            "The filter tensor's layout should be %d, but got %d.",
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
            DataLayout::kMKLDNN, filter->layout()));
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                      platform::errors::InvalidArgument(
                          "Got wrong formats for Filter tensor."));

    PADDLE_ENFORCE_EQ(
        input->dims().size(), 4,
        platform::errors::InvalidArgument("Input must be with 4 dimensions, "
                                          "i.e. NCHW. but got dimension =%d",
                                          input->dims().size()));
    PADDLE_ENFORCE_EQ(
        filter->dims().size(), 4,
        platform::errors::InvalidArgument("Filter must be with 4 dimensions, "
                                          "i.e. OIHW, but got dimension =%d",
                                          filter->dims().size()));
F
FDInSky 已提交
83

84
    if (bias) {
F
FDInSky 已提交
85
      PADDLE_ENFORCE_EQ(
86
          bias->layout(), DataLayout::kMKLDNN,
87
          platform::errors::InvalidArgument(
88 89 90
              "The bias tensor's laytout should be %d, but got %d.",
              DataLayout::kMKLDNN, bias->layout()));
      PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
91
                        platform::errors::InvalidArgument(
92
                            "Got wrong format for Bias tensor."));
A
Adam 已提交
93

94
      PADDLE_ENFORCE_EQ(
95 96 97 98 99
          bias->dims().size(), 1,
          platform::errors::InvalidArgument("Bias must only have 1 dimension, "
                                            "i.e. X, but got dimension = %d .",
                                            bias->dims().size()));
    }
100

101
    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
102
    dnnl::memory::dims strides(begin(strides_temp), end(strides_temp));
103 104

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
105
    dnnl::memory::dims paddings(begin(paddings_temp), end(paddings_temp));
106 107

    std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
108
    dnnl::memory::dims dilations(begin(dilations_temp), end(dilations_temp));
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

    int groups = ctx.Attr<int>("groups");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");

    PADDLE_ENFORCE_EQ(
        strides.size(), 2,
        platform::errors::Unimplemented(
            "Now we only support 2d oneDNN convolution transpose op"));

    const auto& input_dims = input->dims();
    const auto data_dims =
        framework::slice_ddim(input_dims, 2, input_dims.size());
    const auto& filter_dims = filter->dims();
    const auto filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());

    const auto ksize = framework::vectorize(filter_data_dims);

    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             data_dims, strides, ksize);

    std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                   [](int64_t i) { return i - 1; });

    const auto src_tz = framework::vectorize(input->dims());
    const auto weights_tz = GetWeightsTz(filter, groups);
    const auto dst_tz = framework::vectorize(output->dims());
    const auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
    const auto chosen_memory_format = MKLDNNMemoryFormat::any;
    const std::string fuse_activation =
        ctx.Attr<std::string>("fuse_activation");
    const float fuse_alpha = ctx.Attr<float>("fuse_alpha");
    const float fuse_beta = ctx.Attr<float>("fuse_beta");

148
    auto data_type = dnnl::memory::data_type::f32;
149 150
    if (ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16" ||
        std::is_same<T_out, platform::bfloat16>::value)
151
      data_type = dnnl::memory::data_type::bf16;
152 153 154 155 156 157 158 159

    const auto src_md =
        platform::MKLDNNMemDesc(src_tz, data_type, chosen_memory_format);
    const auto weights_md =
        platform::MKLDNNMemDesc(weights_tz, data_type, chosen_memory_format);
    const auto dst_md = platform::MKLDNNMemDesc(
        dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);

160
    const dnnl::primitive_attr conv_trans_attr =
161
        CreatePostOps(fuse_activation, fuse_alpha, fuse_beta);
162 163
    auto fwd_prop_kind = is_test_ ? dnnl::prop_kind::forward_inference
                                  : dnnl::prop_kind::forward_training;
164 165 166 167 168 169 170 171 172 173 174 175 176
    if (bias) {
      std::vector<int64_t> bias_tz = framework::vectorize(bias->dims());
      const auto bias_md =
          platform::MKLDNNMemDesc(bias_tz, data_type, MKLDNNMemoryFormat::x);
      this->AcquireForwardPrimitiveDescriptor(
          conv_trans_attr, fwd_prop_kind, dnnl::algorithm::deconvolution_direct,
          src_md, weights_md, bias_md, dst_md, strides, dilations,
          mkldnn_paddings[0], mkldnn_paddings[1]);
    } else {
      this->AcquireForwardPrimitiveDescriptor(
          conv_trans_attr, fwd_prop_kind, dnnl::algorithm::deconvolution_direct,
          src_md, weights_md, dst_md, strides, dilations, mkldnn_paddings[0],
          mkldnn_paddings[1]);
177 178
    }
  }
J
Jacek Czaja 已提交
179

180 181 182 183 184
  dnnl::primitive_attr CreatePostOps(const std::string& fuse_activation,
                                     const float& fuse_alpha,
                                     const float& fuse_beta) {
    dnnl::primitive_attr conv_attr;
    dnnl::post_ops post_operations;
185 186 187 188 189

    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
      constexpr float scale = 1.0f;
190
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_relu,
191 192 193
                                     fuse_alpha, fuse_beta);
    } else if (fuse_activation == "relu6") {
      constexpr float scale = 1.0f;
194 195
      post_operations.append_eltwise(
          scale, dnnl::algorithm::eltwise_bounded_relu, fuse_alpha, fuse_beta);
196 197
    } else if (fuse_activation == "swish") {
      constexpr float scale = 1.0f;
198
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_swish,
199 200 201 202 203
                                     fuse_alpha, fuse_beta);
    }
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }
J
Jacek Czaja 已提交
204

205
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorder(
206
      const framework::Tensor* input) {
J
Jacek Czaja 已提交
207
    const T* input_data = input->data<T>();
208 209 210
    auto user_src_md = platform::MKLDNNMemDesc(
        framework::vectorize(input->dims()), platform::MKLDNNGetDataType<T>(),
        input->format());
211
    return platform::MKLDNNHandlerNoCachingT<T, dnnl::deconvolution_forward>::
212 213
        AcquireMemoryWithReorder(user_src_md, this->fwd_pd_->src_desc(),
                                 platform::to_void_cast<T>(input_data));
214 215
  }

216
  std::shared_ptr<dnnl::memory> AcquireWeightsMemoryWithReorder(
217 218 219 220 221 222 223 224
      const platform::MKLDNNDeviceContext& dev_ctx, const std::string& key,
      const framework::Tensor* filter, const int& groups) {
    const K* filter_data = filter->data<K>();
    auto weights_tz = GetWeightsTz(filter, groups);
    int g = std::max(groups, 1);

    auto user_src_md = platform::MKLDNNMemDesc(
        weights_tz, platform::MKLDNNGetDataType<K>(),
225
        (g == 1) ? MKLDNNMemoryFormat::iohw : MKLDNNMemoryFormat::giohw);
J
Jacek Czaja 已提交
226

227 228
    return this->template AcquireMemoryWithReorder<K>(
        dev_ctx, user_src_md, this->fwd_pd_->weights_desc(),
229 230
        platform::to_void_cast<K>(filter_data), key, "@weights_mem_p",
        is_test_);
231
  }
232

233
  template <typename F = T>
234
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorder(
235
      const platform::MKLDNNDeviceContext& dev_ctx,
236 237 238 239
      const dnnl::memory::desc& user_md, const dnnl::memory::desc& target_md,
      void* ptr, const std::string& key, const std::string& suffix,
      bool is_persistent = false, const std::vector<float>& scale_data = {1.0f},
      int mask = 0) {
240 241 242 243 244 245 246 247 248 249 250 251
    const auto target_key = key + suffix + "_target";
    const auto key_reorder_p = key + suffix + "reorder_p";
    const auto user_key = key + suffix + "_user";

    auto target_memory_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx.GetBlob(target_key));

    if (target_memory_p == nullptr) {
      auto user_memory_p =
          std::make_shared<dnnl::memory>(user_md, this->engine_, ptr);
      if (user_md != target_md) {
        target_memory_p =
252
            std::make_shared<dnnl::memory>(target_md, this->engine_);
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        dnnl::reorder::primitive_desc reorder_pdesc;
        if (platform::is_int8<T>()) {
          dnnl::primitive_attr attr;
          attr.set_output_scales(mask, scale_data);
          reorder_pdesc = dnnl::reorder::primitive_desc(*user_memory_p,
                                                        *target_memory_p, attr);
        } else {
          reorder_pdesc =
              dnnl::reorder::primitive_desc(*user_memory_p, *target_memory_p);
        }
        auto reorder_p = std::make_shared<dnnl::reorder>(reorder_pdesc);
        dev_ctx.SetBlob(key_reorder_p, reorder_p);

        auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
269 270
        reorder_p->execute(astream, {{DNNL_ARG_FROM, *user_memory_p},
                                     {DNNL_ARG_TO, *target_memory_p}});
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
        astream.wait();
      } else {
        target_memory_p = user_memory_p;
      }
      dev_ctx.SetBlob(user_key, user_memory_p);
      dev_ctx.SetBlob(target_key, target_memory_p);
    } else if (!is_persistent) {
      auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();

      auto user_memory_p =
          std::static_pointer_cast<dnnl::memory>(dev_ctx.GetBlob(user_key));
      user_memory_p->set_data_handle(ptr);

      // TODO(jczaja): Here we detect if reorder is cached it means it is needed
      // need to change this to get rid of keys
286
      auto reorder_p = std::static_pointer_cast<dnnl::reorder>(
287 288 289 290
          dev_ctx.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
291 292
        reorder_p->execute(astream, {{DNNL_ARG_FROM, *user_memory_p},
                                     {DNNL_ARG_TO, *target_memory_p}});
293 294
        astream.wait();
      }
J
Jacek Czaja 已提交
295
    }
296
    return target_memory_p;
297 298
  }

299
  std::shared_ptr<dnnl::memory> AcquireBiasMemoryWithReorder(
300 301 302 303 304 305 306 307 308
      const platform::MKLDNNDeviceContext& dev_ctx, const std::string& key,
      const framework::Tensor* bias) {
    const K* bias_data = bias->data<K>();
    auto user_bias_md = platform::MKLDNNMemDesc(
        framework::vectorize(bias->dims()), platform::MKLDNNGetDataType<K>(),
        MKLDNNMemoryFormat::x);
    return this->AcquireMemoryWithReorder(
        dev_ctx, user_bias_md, this->fwd_pd_->bias_desc(),
        platform::to_void_cast<K>(bias_data), key, "@bias_mem_p", is_test_);
309
  }
310 311 312

 private:
  const bool is_test_;
313
};
J
Jacek Czaja 已提交
314

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
template <typename T, typename K>
class ConvTransposeMKLDNNOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      platform::errors::PreconditionNotMet(
                          "Operator DNNL ConvTranspose must use CPUPlace"));
    const bool is_bfloat16 =
        ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16";
    const bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    if (is_bfloat16) {
      if (force_fp32_output)
        Execute<float>(ctx);
      else
        Execute<platform::bfloat16>(ctx);
    } else {
      Execute<float>(ctx);
    }
  }
J
Jacek Czaja 已提交
334

335 336 337 338 339
  template <typename T_out>
  void Execute(const framework::ExecutionContext& ctx) const {
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
J
Jacek Czaja 已提交
340

341 342 343 344 345
    const auto* input = ctx.Input<Tensor>("Input");
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
346 347
    ConvTransposeMKLDNNHandlerT<T, K, T_out> handler(ctx, mkldnn_engine, input,
                                                     filter, bias, output);
348
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
349 350 351 352 353
    // Caching Key for weights is needed
    std::string key = platform::CreateKey(dev_ctx, ctx.InputName("Input"),
                                          ctx.InputName("Filter"),
                                          (bias ? ctx.InputName("Bias") : ""));
    key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);
354
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
355
        dev_ctx, key, filter, ctx.Attr<int>("groups"));
356 357 358 359 360 361

    std::shared_ptr<dnnl::memory> dst_memory_p =
        handler.template AcquireDstMemory<T_out>(output);
    auto conv_p = handler.AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> args = {
362 363 364
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};
A
Adam 已提交
365

J
Jacek Czaja 已提交
366
    if (bias) {
367 368
      auto bias_memory_p =
          handler.AcquireBiasMemoryWithReorder(dev_ctx, key, bias);
369
      args.insert({DNNL_ARG_BIAS, *bias_memory_p});
J
Jacek Czaja 已提交
370
    }
371 372
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    conv_p->execute(astream, args);
A
Adam 已提交
373
    astream.wait();
374 375
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
J
Jacek Czaja 已提交
376 377 378 379 380 381 382 383
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

384 385 386 387
REGISTER_OP_KERNEL(
    conv2d_transpose, MKLDNN, ::paddle::platform::CPUPlace,
    ops::ConvTransposeMKLDNNOpKernel<float, float>,
    ops::ConvTransposeMKLDNNOpKernel<paddle::platform::bfloat16, float>);