conv_transpose_mkldnn_op.cc 16.5 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "boost/optional.hpp"
J
Jacek Czaja 已提交
16 17 18
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/malloc.h"
19
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
20 21 22 23 24 25 26 27
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using framework::DataLayout;

28
inline dnnl::memory::dims GetWeightsTz(const Tensor* filter, const int groups) {
29 30 31 32 33 34 35 36 37 38 39 40 41
  auto iohw_weights_tz = framework::vectorize(filter->dims());
  auto weights_tz = iohw_weights_tz;

  // IOHW -> OIHW
  weights_tz[0] = iohw_weights_tz[1];
  weights_tz[1] = iohw_weights_tz[0];
  int g = std::max(groups, 1);
  platform::GetGroupConvWeightsTz(weights_tz, g);
  return weights_tz;
}

template <typename T, typename K, typename T_out>
class ConvTransposeMKLDNNHandlerT
42
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::deconvolution_forward> {
J
Jacek Czaja 已提交
43
 public:
44
  ConvTransposeMKLDNNHandlerT(const framework::ExecutionContext& ctx,
45
                              const dnnl::engine mkldnn_engine,
46 47
                              const Tensor* input, const Tensor* filter,
                              const Tensor* bias, Tensor* output)
48
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::deconvolution_forward>(
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
            mkldnn_engine, ctx.GetPlace()),
        is_test_(ctx.Attr<bool>("is_test")) {
    PADDLE_ENFORCE_EQ(is_test_, true,
                      platform::errors::InvalidArgument(
                          "ConvTransposeMKLDNN works only for inference. "
                          "The attribute \'is_test\' value should be set to "
                          "True, but got is_test=False."));

    PADDLE_ENFORCE_EQ(
        input->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "Got wrong layout = %d for Input tensor.", input->layout()));
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                      platform::errors::InvalidArgument(
                          "Got wrong format for Input tensor. The input "
                          "format is undefined."));

    PADDLE_ENFORCE_EQ(
        filter->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
69
            "The filter tensor's layout should be %d, but got %d.",
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
            DataLayout::kMKLDNN, filter->layout()));
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                      platform::errors::InvalidArgument(
                          "Got wrong formats for Filter tensor."));

    PADDLE_ENFORCE_EQ(
        input->dims().size(), 4,
        platform::errors::InvalidArgument("Input must be with 4 dimensions, "
                                          "i.e. NCHW. but got dimension =%d",
                                          input->dims().size()));
    PADDLE_ENFORCE_EQ(
        filter->dims().size(), 4,
        platform::errors::InvalidArgument("Filter must be with 4 dimensions, "
                                          "i.e. OIHW, but got dimension =%d",
                                          filter->dims().size()));
F
FDInSky 已提交
85

86
    if (bias) {
F
FDInSky 已提交
87
      PADDLE_ENFORCE_EQ(
88
          bias->layout(), DataLayout::kMKLDNN,
89
          platform::errors::InvalidArgument(
90 91 92
              "The bias tensor's laytout should be %d, but got %d.",
              DataLayout::kMKLDNN, bias->layout()));
      PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
93
                        platform::errors::InvalidArgument(
94
                            "Got wrong format for Bias tensor."));
A
Adam 已提交
95

96
      PADDLE_ENFORCE_EQ(
97 98 99 100 101
          bias->dims().size(), 1,
          platform::errors::InvalidArgument("Bias must only have 1 dimension, "
                                            "i.e. X, but got dimension = %d .",
                                            bias->dims().size()));
    }
102

103
    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
104
    dnnl::memory::dims strides(begin(strides_temp), end(strides_temp));
105 106

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
107
    dnnl::memory::dims paddings(begin(paddings_temp), end(paddings_temp));
108 109

    std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
110
    dnnl::memory::dims dilations(begin(dilations_temp), end(dilations_temp));
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

    int groups = ctx.Attr<int>("groups");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");

    PADDLE_ENFORCE_EQ(
        strides.size(), 2,
        platform::errors::Unimplemented(
            "Now we only support 2d oneDNN convolution transpose op"));

    const auto& input_dims = input->dims();
    const auto data_dims =
        framework::slice_ddim(input_dims, 2, input_dims.size());
    const auto& filter_dims = filter->dims();
    const auto filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());

    const auto ksize = framework::vectorize(filter_data_dims);

    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             data_dims, strides, ksize);

    std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                   [](int64_t i) { return i - 1; });

    const auto src_tz = framework::vectorize(input->dims());
    const auto weights_tz = GetWeightsTz(filter, groups);
    const auto dst_tz = framework::vectorize(output->dims());
    const auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
    const auto chosen_memory_format = MKLDNNMemoryFormat::any;
    const std::string fuse_activation =
        ctx.Attr<std::string>("fuse_activation");
    const float fuse_alpha = ctx.Attr<float>("fuse_alpha");
    const float fuse_beta = ctx.Attr<float>("fuse_beta");

150
    auto data_type = dnnl::memory::data_type::f32;
151 152
    if (ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16" ||
        std::is_same<T_out, platform::bfloat16>::value)
153
      data_type = dnnl::memory::data_type::bf16;
154 155 156 157 158 159 160 161

    const auto src_md =
        platform::MKLDNNMemDesc(src_tz, data_type, chosen_memory_format);
    const auto weights_md =
        platform::MKLDNNMemDesc(weights_tz, data_type, chosen_memory_format);
    const auto dst_md = platform::MKLDNNMemDesc(
        dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);

162
    const dnnl::primitive_attr conv_trans_attr =
163
        CreatePostOps(fuse_activation, fuse_alpha, fuse_beta);
164 165
    auto fwd_prop_kind = is_test_ ? dnnl::prop_kind::forward_inference
                                  : dnnl::prop_kind::forward_training;
166 167 168 169 170 171 172 173 174 175 176 177 178
    if (bias) {
      std::vector<int64_t> bias_tz = framework::vectorize(bias->dims());
      const auto bias_md =
          platform::MKLDNNMemDesc(bias_tz, data_type, MKLDNNMemoryFormat::x);
      this->AcquireForwardPrimitiveDescriptor(
          conv_trans_attr, fwd_prop_kind, dnnl::algorithm::deconvolution_direct,
          src_md, weights_md, bias_md, dst_md, strides, dilations,
          mkldnn_paddings[0], mkldnn_paddings[1]);
    } else {
      this->AcquireForwardPrimitiveDescriptor(
          conv_trans_attr, fwd_prop_kind, dnnl::algorithm::deconvolution_direct,
          src_md, weights_md, dst_md, strides, dilations, mkldnn_paddings[0],
          mkldnn_paddings[1]);
179 180
    }
  }
J
Jacek Czaja 已提交
181

182 183 184 185 186
  dnnl::primitive_attr CreatePostOps(const std::string& fuse_activation,
                                     const float& fuse_alpha,
                                     const float& fuse_beta) {
    dnnl::primitive_attr conv_attr;
    dnnl::post_ops post_operations;
187 188 189 190 191

    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
      constexpr float scale = 1.0f;
192
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_relu,
193 194 195
                                     fuse_alpha, fuse_beta);
    } else if (fuse_activation == "relu6") {
      constexpr float scale = 1.0f;
196 197
      post_operations.append_eltwise(
          scale, dnnl::algorithm::eltwise_bounded_relu, fuse_alpha, fuse_beta);
198 199
    } else if (fuse_activation == "swish") {
      constexpr float scale = 1.0f;
200
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_swish,
201 202 203 204 205
                                     fuse_alpha, fuse_beta);
    }
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }
J
Jacek Czaja 已提交
206

207
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorder(
208
      const framework::Tensor* input) {
J
Jacek Czaja 已提交
209
    const T* input_data = input->data<T>();
210 211 212
    auto user_src_md = platform::MKLDNNMemDesc(
        framework::vectorize(input->dims()), platform::MKLDNNGetDataType<T>(),
        input->format());
213
    return platform::MKLDNNHandlerNoCachingT<T, dnnl::deconvolution_forward>::
214 215
        AcquireMemoryWithReorder(user_src_md, this->fwd_pd_->src_desc(),
                                 platform::to_void_cast<T>(input_data));
216 217
  }

218
  std::shared_ptr<dnnl::memory> AcquireWeightsMemoryWithReorder(
219 220 221 222 223 224 225 226
      const platform::MKLDNNDeviceContext& dev_ctx, const std::string& key,
      const framework::Tensor* filter, const int& groups) {
    const K* filter_data = filter->data<K>();
    auto weights_tz = GetWeightsTz(filter, groups);
    int g = std::max(groups, 1);

    auto user_src_md = platform::MKLDNNMemDesc(
        weights_tz, platform::MKLDNNGetDataType<K>(),
227
        (g == 1) ? MKLDNNMemoryFormat::iohw : MKLDNNMemoryFormat::giohw);
J
Jacek Czaja 已提交
228

229 230
    return this->template AcquireMemoryWithReorder<K>(
        dev_ctx, user_src_md, this->fwd_pd_->weights_desc(),
231 232
        platform::to_void_cast<K>(filter_data), key, "@weights_mem_p",
        is_test_);
233
  }
234

235
  template <typename F = T>
236
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorder(
237
      const platform::MKLDNNDeviceContext& dev_ctx,
238 239 240 241
      const dnnl::memory::desc& user_md, const dnnl::memory::desc& target_md,
      void* ptr, const std::string& key, const std::string& suffix,
      bool is_persistent = false, const std::vector<float>& scale_data = {1.0f},
      int mask = 0) {
242 243 244 245 246 247 248 249 250 251 252 253
    const auto target_key = key + suffix + "_target";
    const auto key_reorder_p = key + suffix + "reorder_p";
    const auto user_key = key + suffix + "_user";

    auto target_memory_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx.GetBlob(target_key));

    if (target_memory_p == nullptr) {
      auto user_memory_p =
          std::make_shared<dnnl::memory>(user_md, this->engine_, ptr);
      if (user_md != target_md) {
        target_memory_p =
254
            std::make_shared<dnnl::memory>(target_md, this->engine_);
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
        dnnl::reorder::primitive_desc reorder_pdesc;
        if (platform::is_int8<T>()) {
          dnnl::primitive_attr attr;
          attr.set_output_scales(mask, scale_data);
          reorder_pdesc = dnnl::reorder::primitive_desc(*user_memory_p,
                                                        *target_memory_p, attr);
        } else {
          reorder_pdesc =
              dnnl::reorder::primitive_desc(*user_memory_p, *target_memory_p);
        }
        auto reorder_p = std::make_shared<dnnl::reorder>(reorder_pdesc);
        dev_ctx.SetBlob(key_reorder_p, reorder_p);

        auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
271 272
        reorder_p->execute(astream, {{DNNL_ARG_FROM, *user_memory_p},
                                     {DNNL_ARG_TO, *target_memory_p}});
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
        astream.wait();
      } else {
        target_memory_p = user_memory_p;
      }
      dev_ctx.SetBlob(user_key, user_memory_p);
      dev_ctx.SetBlob(target_key, target_memory_p);
    } else if (!is_persistent) {
      auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();

      auto user_memory_p =
          std::static_pointer_cast<dnnl::memory>(dev_ctx.GetBlob(user_key));
      user_memory_p->set_data_handle(ptr);

      // TODO(jczaja): Here we detect if reorder is cached it means it is needed
      // need to change this to get rid of keys
288
      auto reorder_p = std::static_pointer_cast<dnnl::reorder>(
289 290 291 292
          dev_ctx.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
293 294
        reorder_p->execute(astream, {{DNNL_ARG_FROM, *user_memory_p},
                                     {DNNL_ARG_TO, *target_memory_p}});
295 296
        astream.wait();
      }
J
Jacek Czaja 已提交
297
    }
298
    return target_memory_p;
299 300
  }

301
  std::shared_ptr<dnnl::memory> AcquireBiasMemoryWithReorder(
302 303 304 305 306 307 308 309 310
      const platform::MKLDNNDeviceContext& dev_ctx, const std::string& key,
      const framework::Tensor* bias) {
    const K* bias_data = bias->data<K>();
    auto user_bias_md = platform::MKLDNNMemDesc(
        framework::vectorize(bias->dims()), platform::MKLDNNGetDataType<K>(),
        MKLDNNMemoryFormat::x);
    return this->AcquireMemoryWithReorder(
        dev_ctx, user_bias_md, this->fwd_pd_->bias_desc(),
        platform::to_void_cast<K>(bias_data), key, "@bias_mem_p", is_test_);
311
  }
312 313 314

 private:
  const bool is_test_;
315
};
J
Jacek Czaja 已提交
316

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
template <typename T, typename K>
class ConvTransposeMKLDNNOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      platform::errors::PreconditionNotMet(
                          "Operator DNNL ConvTranspose must use CPUPlace"));
    const bool is_bfloat16 =
        ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16";
    const bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    if (is_bfloat16) {
      if (force_fp32_output)
        Execute<float>(ctx);
      else
        Execute<platform::bfloat16>(ctx);
    } else {
      Execute<float>(ctx);
    }
  }
J
Jacek Czaja 已提交
336

337 338 339 340 341
  template <typename T_out>
  void Execute(const framework::ExecutionContext& ctx) const {
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
J
Jacek Czaja 已提交
342

343 344 345 346 347
    const auto* input = ctx.Input<Tensor>("Input");
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
348 349
    ConvTransposeMKLDNNHandlerT<T, K, T_out> handler(ctx, mkldnn_engine, input,
                                                     filter, bias, output);
350
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
351 352 353 354 355
    // Caching Key for weights is needed
    std::string key = platform::CreateKey(dev_ctx, ctx.InputName("Input"),
                                          ctx.InputName("Filter"),
                                          (bias ? ctx.InputName("Bias") : ""));
    key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);
356
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
357
        dev_ctx, key, filter, ctx.Attr<int>("groups"));
358 359 360 361 362 363

    std::shared_ptr<dnnl::memory> dst_memory_p =
        handler.template AcquireDstMemory<T_out>(output);
    auto conv_p = handler.AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> args = {
364 365 366
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};
A
Adam 已提交
367

J
Jacek Czaja 已提交
368
    if (bias) {
369 370
      auto bias_memory_p =
          handler.AcquireBiasMemoryWithReorder(dev_ctx, key, bias);
371
      args.insert({DNNL_ARG_BIAS, *bias_memory_p});
J
Jacek Czaja 已提交
372
    }
373 374
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    conv_p->execute(astream, args);
A
Adam 已提交
375
    astream.wait();
376 377
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
J
Jacek Czaja 已提交
378 379 380 381 382 383 384 385
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

386 387 388 389
REGISTER_OP_KERNEL(
    conv2d_transpose, MKLDNN, ::paddle::platform::CPUPlace,
    ops::ConvTransposeMKLDNNOpKernel<float, float>,
    ops::ConvTransposeMKLDNNOpKernel<paddle::platform::bfloat16, float>);