heter_context.h 4.1 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

T
Thunderbrook 已提交
17
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
18

Y
yaoxuefeng 已提交
19
#include <algorithm>
T
Thunderbrook 已提交
20 21 22 23
#include <map>
#include <unordered_map>
#include <vector>

T
Thunderbrook 已提交
24
#ifdef PADDLE_WITH_PSLIB
T
Thunderbrook 已提交
25
#include "common_value.h"  // NOLINT
T
Thunderbrook 已提交
26 27 28 29 30 31
#endif

#ifdef PADDLE_WITH_PSCORE
#include "paddle/fluid/distributed/table/depends/large_scale_kv.h"
#endif

32
#include "paddle/fluid/distributed/thirdparty/round_robin.h"
T
Thunderbrook 已提交
33 34 35 36 37 38 39 40
#include "paddle/fluid/framework/fleet/heter_ps/feature_value.h"
#include "paddle/fluid/framework/scope.h"

namespace paddle {
namespace framework {

class HeterContext {
 public:
41 42 43 44 45 46
  ~HeterContext() {
    for (size_t i = 0; i < mutex_.size(); ++i) {
      delete mutex_[i];
    }
    mutex_.clear();
  }
T
Thunderbrook 已提交
47 48
  Scope* scope_{nullptr};
  std::vector<std::vector<FeatureKey>> feature_keys_;
T
Thunderbrook 已提交
49
#ifdef PADDLE_WITH_PSLIB
T
Thunderbrook 已提交
50
  std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>> value_ptr_;
T
Thunderbrook 已提交
51 52 53 54
#endif
#ifdef PADDLE_WITH_PSCORE
  std::vector<std::vector<paddle::distributed::VALUE*>> value_ptr_;
#endif
55 56 57 58
  std::vector<std::vector<FeatureValue>> device_values_;
  std::vector<std::vector<FeatureKey>> device_keys_;
  std::vector<std::mutex*> mutex_;

Y
yaoxuefeng 已提交
59
  uint32_t shard_num_ = 37;
T
Thunderbrook 已提交
60 61 62 63 64 65 66
  uint64_t size() {
    uint64_t total_size = 0;
    for (auto& keys : feature_keys_) {
      total_size += keys.size();
    }
    return total_size;
  }
Y
yaoxuefeng 已提交
67 68
  void SetShardNum(uint32_t shard_num) { shard_num_ = shard_num; }
  uint32_t ShardNum() { return shard_num_; }
69 70 71 72 73 74 75 76 77 78 79 80
  void init(int shard_num, int device_num) {
    shard_num_ = shard_num;
    feature_keys_.resize(shard_num_);
    value_ptr_.resize(shard_num_);

    device_values_.resize(device_num);
    device_keys_.resize(device_num);
    mutex_.resize(device_num);
    for (size_t i = 0; i < mutex_.size(); ++i) {
      mutex_[i] = new std::mutex();
    }
  }
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

  void Reset() {
    for (size_t i = 0; i < feature_keys_.size(); ++i) {
      feature_keys_[i].clear();
    }
    for (size_t i = 0; i < value_ptr_.size(); ++i) {
      value_ptr_[i].clear();
    }
    for (size_t i = 0; i < device_values_.size(); ++i) {
      device_values_[i].clear();
    }
    for (size_t i = 0; i < device_keys_.size(); ++i) {
      device_keys_[i].clear();
    }
  }
96 97
  void batch_add_keys(
      const std::vector<std::unordered_set<uint64_t>>& thread_keys) {
Y
yaoxuefeng 已提交
98 99 100 101 102 103
    assert(thread_keys.size() == feature_keys_.size());

    for (uint32_t i = 0; i < shard_num_; i++) {
      int idx = 0;
      idx = feature_keys_[i].size();
      feature_keys_[i].resize(feature_keys_[i].size() + thread_keys[i].size());
104 105
      std::copy(thread_keys[i].begin(), thread_keys[i].end(),
                feature_keys_[i].begin() + idx);
Y
yaoxuefeng 已提交
106 107
    }
  }
108

109
  void batch_add_keys(int shard_num,
110
                      const robin_hood::unordered_set<uint64_t>& shard_keys) {
111 112 113 114 115 116 117
    int idx = feature_keys_[shard_num].size();
    feature_keys_[shard_num].resize(feature_keys_[shard_num].size() +
                                    shard_keys.size());
    std::copy(shard_keys.begin(), shard_keys.end(),
              feature_keys_[shard_num].begin() + idx);
  }

Y
yaoxuefeng 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
  void UniqueKeys() {
    std::vector<std::thread> threads;
    auto unique_func = [this](int i) {
      auto& cur_keys = feature_keys_[i];
      std::sort(cur_keys.begin(), cur_keys.end());
      std::vector<FeatureKey>::iterator it;
      it = std::unique(cur_keys.begin(), cur_keys.end());
      cur_keys.resize(std::distance(cur_keys.begin(), it));
    };
    for (uint32_t i = 0; i < shard_num_; i++) {
      threads.push_back(std::thread(unique_func, i));
    }
    for (std::thread& t : threads) {
      t.join();
    }
  }
T
Thunderbrook 已提交
134 135 136 137 138
};

}  // end namespace framework
}  // end namespace paddle
#endif