heter_context.h 3.2 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

T
Thunderbrook 已提交
17
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
18

Y
yaoxuefeng 已提交
19
#include <algorithm>
T
Thunderbrook 已提交
20 21 22 23
#include <map>
#include <unordered_map>
#include <vector>

T
Thunderbrook 已提交
24
#ifdef PADDLE_WITH_PSLIB
T
Thunderbrook 已提交
25
#include "common_value.h"  // NOLINT
T
Thunderbrook 已提交
26 27 28 29 30 31
#endif

#ifdef PADDLE_WITH_PSCORE
#include "paddle/fluid/distributed/table/depends/large_scale_kv.h"
#endif

T
Thunderbrook 已提交
32 33 34 35 36 37 38 39
#include "paddle/fluid/framework/fleet/heter_ps/feature_value.h"
#include "paddle/fluid/framework/scope.h"

namespace paddle {
namespace framework {

class HeterContext {
 public:
40 41 42 43 44 45
  ~HeterContext() {
    for (size_t i = 0; i < mutex_.size(); ++i) {
      delete mutex_[i];
    }
    mutex_.clear();
  }
T
Thunderbrook 已提交
46 47
  Scope* scope_{nullptr};
  std::vector<std::vector<FeatureKey>> feature_keys_;
T
Thunderbrook 已提交
48
#ifdef PADDLE_WITH_PSLIB
T
Thunderbrook 已提交
49
  std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>> value_ptr_;
T
Thunderbrook 已提交
50 51 52 53
#endif
#ifdef PADDLE_WITH_PSCORE
  std::vector<std::vector<paddle::distributed::VALUE*>> value_ptr_;
#endif
54 55 56 57
  std::vector<std::vector<FeatureValue>> device_values_;
  std::vector<std::vector<FeatureKey>> device_keys_;
  std::vector<std::mutex*> mutex_;

Y
yaoxuefeng 已提交
58
  uint32_t shard_num_ = 37;
T
Thunderbrook 已提交
59 60 61 62 63 64 65
  uint64_t size() {
    uint64_t total_size = 0;
    for (auto& keys : feature_keys_) {
      total_size += keys.size();
    }
    return total_size;
  }
Y
yaoxuefeng 已提交
66 67
  void SetShardNum(uint32_t shard_num) { shard_num_ = shard_num; }
  uint32_t ShardNum() { return shard_num_; }
68 69 70 71 72 73 74 75 76 77 78 79
  void init(int shard_num, int device_num) {
    shard_num_ = shard_num;
    feature_keys_.resize(shard_num_);
    value_ptr_.resize(shard_num_);

    device_values_.resize(device_num);
    device_keys_.resize(device_num);
    mutex_.resize(device_num);
    for (size_t i = 0; i < mutex_.size(); ++i) {
      mutex_[i] = new std::mutex();
    }
  }
80 81
  void batch_add_keys(
      const std::vector<std::unordered_set<uint64_t>>& thread_keys) {
Y
yaoxuefeng 已提交
82 83 84 85 86 87
    assert(thread_keys.size() == feature_keys_.size());

    for (uint32_t i = 0; i < shard_num_; i++) {
      int idx = 0;
      idx = feature_keys_[i].size();
      feature_keys_[i].resize(feature_keys_[i].size() + thread_keys[i].size());
88 89
      std::copy(thread_keys[i].begin(), thread_keys[i].end(),
                feature_keys_[i].begin() + idx);
Y
yaoxuefeng 已提交
90 91
    }
  }
92

Y
yaoxuefeng 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
  void UniqueKeys() {
    std::vector<std::thread> threads;
    auto unique_func = [this](int i) {
      auto& cur_keys = feature_keys_[i];
      std::sort(cur_keys.begin(), cur_keys.end());
      std::vector<FeatureKey>::iterator it;
      it = std::unique(cur_keys.begin(), cur_keys.end());
      cur_keys.resize(std::distance(cur_keys.begin(), it));
    };
    for (uint32_t i = 0; i < shard_num_; i++) {
      threads.push_back(std::thread(unique_func, i));
    }
    for (std::thread& t : threads) {
      t.join();
    }
  }
T
Thunderbrook 已提交
109 110 111 112 113
};

}  // end namespace framework
}  // end namespace paddle
#endif