utils.py 25.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
JZ-LIANG 已提交
14
import paddle
15
from paddle.fluid import core, unique_name
16
from functools import reduce
17
from paddle.distributed.fleet.meta_optimizers.common import is_loss_grad_op, is_backward_op
18 19 20
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY

import re
J
JZ-LIANG 已提交
21
import os
22 23 24 25 26 27 28 29 30


def check_broadcast(block):
    """
    if a var is broadcasted, it should have a sync_comm before
    this var is used, if not, raise error.
    if the broadcasted var has a fill_constant op, the fill_constant
    op should stay forward before the broadcast op, and before a
    sync_calc op. Otherwise, raise error.
31 32

    should ignore and skip broadcast_op of inner_parallelism (e.g. Megatron)
33 34 35 36
    """
    broadcast_vars = {}
    for idx, op in enumerate(block.ops):
        if op.type == "c_broadcast":
37 38 39 40 41 42 43 44 45 46 47 48
            if op.all_attrs()["use_calc_stream"] == False:
                var_name = op.desc.input_arg_names()[0]
                if "@BroadCast" in var_name:
                    if var_name in broadcast_vars:
                        raise ValueError("var_name areadly exist: {}"
                                         "the old pos is {}, the new pos is {}".
                                         format(var_name, broadcast_vars[
                                             var_name]["broadcast_pos"], idx))
                    broadcast_vars[var_name] = {
                        "fill_constant_pos": -1,
                        "broadcast_pos": idx,
                    }
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

    for idx, op in enumerate(block.ops):
        if op.type == "fill_constant":
            var_name = op.desc.output_arg_names()[0]
            if var_name in broadcast_vars:
                broadcast_vars[var_name]["fill_constant_pos"] = idx
            continue

    last_sync_comm_op_idx = -1
    last_sync_calc_op_idx = -1
    for idx, op in enumerate(block.ops):
        if op.type == "c_sync_comm_stream":
            last_sync_comm_op_idx = idx
            continue
        if op.type == "c_sync_calc_stream":
            last_sync_calc_op_idx = idx
            continue
        if op.type == "c_broadcast":
67 68 69 70 71 72 73 74 75
            if op.all_attrs()["use_calc_stream"] == False:
                var_name = op.desc.input_arg_names()[0]
                if "@BroadCast" in var_name:
                    if broadcast_vars[var_name]["fill_constant_pos"] != -1:
                        assert (last_sync_calc_op_idx != -1)
                        assert (broadcast_vars[var_name]["fill_constant_pos"] <
                                last_sync_calc_op_idx)
                        assert (last_sync_calc_op_idx < idx)
                    continue
76 77 78 79 80 81 82 83 84
        for input_name in op.desc.input_arg_names():
            if input_name in broadcast_vars:
                assert (broadcast_vars[input_name]["broadcast_pos"] != -1)
                assert (broadcast_vars[input_name]["broadcast_pos"] <
                        last_sync_comm_op_idx)
                assert (last_sync_comm_op_idx < idx)
    return


85
def check_allreduce_sum(block, shard, sharding_ring_id, dp_ring_id=-1):
86
    """
87 88 89 90
    the op order should be:
        grad:
            - 0: op that generate Var
            - 1: sync_calc
91
            - 2: reduce_sum_sharding (allreduce --> reduce)
92 93 94 95
            - 3: sync_comm
            - 4: allreuce_sum_dp (dp_grads)
            - 5: sync_comm (dp_grads)
            - 6: op that use Var (dp_grads & sum)
96 97

    should ignore and skip allreduce_op of inner_parallelism (e.g. Megatron)
98
    """
99 100 101 102 103
    vars_status = {}
    dp_grads_status = {}
    idx_last_grad_allreduce = -1
    idx_amp_allreduce = -1
    idx_gradient_clip_allreduce = -1
104

105
    for idx, op in enumerate(block.ops):
106 107 108 109 110 111
        # sharding use both allreduce and reduce to sync grad
        if op.type == "c_allreduce_sum" or op.type == "c_reduce_sum":
            if op.all_attrs()["use_calc_stream"] == False:
                ring_id = op.desc.attr("ring_id")
                var_name = op.desc.input_arg_names()[0]
                param = var_name.split("@")[0]
112

113 114 115 116 117
                assert 'sum' in var_name or ("@GRAD" in var_name)
                if 'sum' in var_name or (not shard.has_param(param)):
                    vars_status[var_name] = -1
                else:
                    dp_grads_status[var_name] = -1
118

119 120 121
                if ring_id != sharding_ring_id:
                    assert shard.has_param(param)
                    assert ring_id == dp_ring_id
122

123 124 125 126
                if "sum" in var_name:
                    idx_amp_allreduce = idx
                elif "@GRAD":
                    idx_last_grad_allreduce = idx
127 128 129

        if op.type == "c_allreduce_max":
            idx_gradient_clip_allreduce = idx
130 131 132

    for op in block.ops:
        if op.type == "c_sync_calc_stream":
133 134 135 136 137 138 139
            for var_name in vars_status:
                if var_name in vars_status and vars_status[var_name] == 0:
                    vars_status[var_name] = 1
            for var_name in dp_grads_status:
                if var_name in dp_grads_status and dp_grads_status[
                        var_name] == 0:
                    dp_grads_status[var_name] = 1
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
        # check sharding allreduce and  reduce but skip megatron allreduce
        elif op.type == "c_allreduce_sum" or op.type == "c_reduce_sum":
            if op.all_attrs()["use_calc_stream"] == False:
                var_name = op.desc.input_arg_names()[0]
                ring_id = op.desc.attr("ring_id")
                if ring_id == sharding_ring_id:
                    assert op.type == "c_reduce_sum", "Grad in Sharding group should be reduce rather than allreduce"
                    if var_name in vars_status:
                        _status = vars_status[var_name]
                    else:
                        _status = dp_grads_status[var_name]
                    if _status == -1:
                        raise ValueError("{} is not generated, but you are"
                                         "trying to all-reduce it".format(
                                             var_name))
                    if _status == 0:
                        raise ValueError("There should be a sync_calc op "
                                         "after generate Var: {} and before the"
                                         "c_allreduce_sum op".format(var_name))
                    assert (_status == 1)
                    if var_name in vars_status:
                        vars_status[var_name] = 2
                    else:
                        dp_grads_status[var_name] = 2
164
                else:
165 166 167 168 169
                    assert ring_id == dp_ring_id
                    param = var_name.split("@")[0]
                    assert shard.has_param(param)
                    assert dp_grads_status[var_name] == 3
                    dp_grads_status[var_name] = 4
170

171
        elif op.type == "c_sync_comm_stream":
172 173
            var_name = op.desc.input_arg_names()[0]
            ring_id = op.desc.attr("ring_id")
174
            if ring_id == sharding_ring_id:
175 176 177 178 179 180 181 182 183 184 185 186 187 188
                for var_name in op.desc.input_arg_names():
                    if var_name in vars_status:
                        assert vars_status[var_name] == 2
                        vars_status[var_name] = 3
                    elif var_name in dp_grads_status:
                        assert dp_grads_status[var_name] == 2
                        dp_grads_status[var_name] = 3
            else:
                for var_name in op.desc.input_arg_names():
                    param = var_name.split("@")[0]
                    assert ring_id == dp_ring_id
                    assert shard.has_param(param)
                    assert dp_grads_status[var_name] == 4
                    dp_grads_status[var_name] = 5
189 190
        else:
            for input_name in op.desc.input_arg_names():
191 192
                if input_name in vars_status:
                    if vars_status[input_name] != 3:
193 194
                        raise ValueError("There should be a sync_comm op "
                                         "after allreduce the Var: {}".format(
195
                                             input_name))
196 197 198
                    raise ValueError(
                        "The reduce output grad [{}] should NOT be be used in Non-root rank.".
                        format(input_name))
199 200 201 202 203 204 205 206 207 208 209 210
                if input_name in dp_grads_status:
                    if dp_ring_id == -1:
                        if dp_grads_status[input_name] != 3:
                            raise ValueError("There should be a sync_comm op "
                                             "after allreduce the Var: {}".
                                             format(input_name))
                    else:
                        if dp_grads_status[input_name] != 5:
                            raise ValueError(
                                "The grad in shard should be allreduce and sync"
                                "twice before usage {}".format(input_name))

211
            for output_name in op.desc.output_arg_names():
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
                if output_name in vars_status and \
                    vars_status[output_name] == -1:
                    vars_status[output_name] = 0
                if output_name in dp_grads_status and  \
                    dp_grads_status[output_name] == -1:
                    dp_grads_status[output_name] = 0

    # check sharding with amp
    if idx_amp_allreduce != -1:
        assert idx_amp_allreduce > idx_last_grad_allreduce

    # check sharding with gradient_clip_by_global_norm
    if idx_gradient_clip_allreduce != -1:
        assert idx_gradient_clip_allreduce > idx_last_grad_allreduce

227 228 229
    return


J
JZ-LIANG 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243
def get_valid_op_role(block, insert_idx):
    """
    return OpRole.Forward or OpRole.Backward
    """
    op_role = block.ops[insert_idx].attr('op_role')
    if (insert_idx >= len(block.ops)) or (
            op_role in [int(OpRole.Backward), int(OpRole.Optimize)]):
        return OpRole.Backward
    if op_role in [int(OpRole.Forward), int(OpRole.Loss)]:
        return OpRole.Forward

    return get_valid_op_role(block, insert_idx + 1)


244 245 246 247
def insert_sync_calc_op(block, insert_idx, calc_dep_vars):
    """
    _insert_sync_calc_op
    """
J
JZ-LIANG 已提交
248
    op_role = get_valid_op_role(block, insert_idx)
249 250 251 252 253 254 255 256 257
    block._insert_op_without_sync(
        insert_idx,
        type='c_sync_calc_stream',
        inputs={'X': calc_dep_vars},
        outputs={'Out': calc_dep_vars},
        attrs={OP_ROLE_KEY: op_role})
    return


258
def insert_sync_comm_op(block, insert_idx, ring_id, comm_dep_vars):
259
    """
260
    insert sync_comm_op for single var
261
    """
J
JZ-LIANG 已提交
262
    op_role = get_valid_op_role(block, insert_idx)
263 264 265 266 267 268 269 270 271 272 273 274 275 276
    block._insert_op_without_sync(
        insert_idx,
        type='c_sync_comm_stream',
        inputs={'X': comm_dep_vars},
        outputs={'Out': comm_dep_vars},
        attrs={'ring_id': ring_id,
               OP_ROLE_KEY: op_role})
    return 1


def insert_sync_comm_ops(block, insert_idx, ring_id, comm_dep_vars):
    """
    insert sync_comm_op for vars
    """
277 278 279 280
    # NOTE (JZ-LIANG) to be check, may result undefined case 
    if len(comm_dep_vars) == 0:
        return 0

281 282 283 284 285 286 287 288 289
    op_role = get_valid_op_role(block, insert_idx)
    block._insert_op_without_sync(
        insert_idx,
        type='c_sync_comm_stream',
        inputs={'X': comm_dep_vars},
        outputs={'Out': comm_dep_vars},
        attrs={'ring_id': int(ring_id),
               OP_ROLE_KEY: op_role})
    return 1
290 291 292 293 294 295


def insert_fill_constant_ops(block, insert_idx, fill_constant_vars):
    """
    _add_fill_constant_ops
    """
J
JZ-LIANG 已提交
296
    op_role = get_valid_op_role(block, insert_idx)
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
    for broadcast_name in fill_constant_vars:
        broadcast_var = block.var(broadcast_name)
        block._insert_op_without_sync(
            insert_idx,
            type="fill_constant",
            outputs={"Out": broadcast_var.name},
            attrs={
                "shape": broadcast_var.shape,
                "dtype": broadcast_var.dtype,
                "value": 0.0,
                OP_ROLE_KEY: op_role
            })
    return


def insert_cast_ops(block, insert_idx, cast_ops):
    """
    _add_cast_ops
    """
J
JZ-LIANG 已提交
316
    op_role = get_valid_op_role(block, insert_idx)
317 318 319 320 321 322 323 324 325 326 327 328 329 330
    for fp16_name, fp32_name in cast_ops.items():
        block._insert_op_without_sync(
            insert_idx,
            type="cast",
            inputs={"X": fp32_name},
            outputs={"Out": fp16_name},
            attrs={
                "in_dtype": core.VarDesc.VarType.FP32,
                "out_dtype": core.VarDesc.VarType.FP16,
                OP_ROLE_KEY: op_role
            })
    return


331 332 333 334 335
def insert_allreduce_ops(block,
                         insert_idx,
                         ring_id,
                         allreduce_vars,
                         op_role=OpRole.Backward,
336 337
                         use_calc_stream=False,
                         user_defined_strategy=None):
338 339 340
    """
    _add_allreduce_ops
    """
341 342 343
    if len(allreduce_vars) == 0:
        return

344 345 346 347 348
    if user_defined_strategy and \
            user_defined_strategy.fuse_all_reduce_ops and \
            not user_defined_strategy.fuse_grad_merge:
        # If fuse_grad_merge is enable, the grad vars have already been fused during
        # gradient merge pass, therefore, those vars are not need to be fused here
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
        insert_fused_allreduce_ops(block, insert_idx, ring_id, allreduce_vars,
                                   op_role, use_calc_stream,
                                   user_defined_strategy.fuse_grad_size_in_MB)
    else:
        for var in allreduce_vars:
            block._insert_op_without_sync(
                insert_idx,
                type='c_allreduce_sum',
                inputs={'X': var},
                outputs={'Out': var},
                attrs={
                    'ring_id': ring_id,
                    'use_calc_stream': use_calc_stream,
                    OP_ROLE_KEY: op_role
                })

    return


def insert_fused_allreduce_ops(block,
                               insert_idx,
                               ring_id,
                               allreduce_vars,
                               op_role=OpRole.Backward,
                               use_calc_stream=False,
                               fuse_grad_size_in_MB=32):
    segments = []
    cur_size = 0.
    last_dtype = None
378
    for var in allreduce_vars:
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
        real_var = block.var(var)
        var_size = get_var_size(real_var)
        if cur_size + var_size > fuse_grad_size_in_MB \
                or len(segments) == 0 \
                or real_var.dtype != last_dtype:
            segments.append([real_var])
            cur_size = var_size
            last_dtype = real_var.dtype
        else:
            segments[-1].append(real_var)
            cur_size += var_size

    fused_vars = []
    for segment in segments:
        tmp_var = block.create_var(
            name=unique_name.generate('FusedOutput_{}'.format(segment[0].name)),
            dtype=segment[0].dtype,
            persistable=False,
            stop_gradient=True)
        fused_vars.append(tmp_var)
399 400
        block._insert_op_without_sync(
            insert_idx,
401 402 403 404 405 406 407 408 409 410 411 412 413 414
            type="coalesce_tensor",
            inputs={"Input": segment},
            outputs={"Output": segment,
                     "FusedOutput": tmp_var},
            attrs={
                "copy_data": True,
                "use_align": True,
                "dtype": segment[0].dtype,
                OP_ROLE_KEY: op_role
            })

    for fused_var in fused_vars:
        block._insert_op_without_sync(
            insert_idx + len(fused_vars),
415
            type='c_allreduce_sum',
416 417
            inputs={'X': fused_var},
            outputs={'Out': fused_var},
418 419 420 421 422
            attrs={
                'ring_id': ring_id,
                'use_calc_stream': use_calc_stream,
                OP_ROLE_KEY: op_role
            })
423 424 425 426 427 428 429
        if not use_calc_stream:
            block._insert_op_without_sync(
                insert_idx + len(fused_vars),
                type='c_sync_calc_stream',
                inputs={'X': fused_var},
                outputs={'Out': fused_var},
                attrs={OP_ROLE_KEY: op_role})
430 431


432 433 434 435 436 437
def insert_reduce_ops(block,
                      insert_idx,
                      ring_id,
                      reduce_vars,
                      shard,
                      op_role=OpRole.Backward,
438 439
                      use_calc_stream=False,
                      rank=None):
440 441 442
    """
    _add_allreduce_ops
    """
443
    grad_in_this_device = []
444
    for var in reduce_vars:
445

446
        root_id = get_grad_device(var, shard)
Z
zhangchunle 已提交
447 448
        assert root_id >= 0, "root id should be a positive int, but now root id is {}".format(
            root_id)
449 450
        if rank is not None and rank == root_id:
            grad_in_this_device.append(var)
451 452 453 454 455 456 457 458
        block._insert_op_without_sync(
            insert_idx,
            type='c_reduce_sum',
            inputs={'X': var},
            outputs={'Out': var},
            attrs={
                'ring_id': ring_id,
                'root_id': root_id,
459 460
                'use_calc_stream': use_calc_stream,
                OP_ROLE_KEY: op_role
461
            })
462 463

    return grad_in_this_device
464 465


466 467 468 469
def get_grad_device(grad_name, shard):
    assert "@GRAD" in grad_name, "[{}] should be a grad variable.".format(
        grad_name)
    base_name = None
470
    # NOTE: mind the traversal order
471
    possible_suffixes = [
472 473 474 475 476 477 478
        # sharding gm
        '.cast_fp16@GRAD@MERGED',
        '.cast_fp16@GRAD',
        # pipeline
        '@GRAD@MERGED@FP16',
        '@GRAD@MERGED',
        '@GRAD',
479 480 481 482 483 484 485 486 487 488 489 490
    ]
    for suffix in possible_suffixes:
        if suffix in grad_name:
            base_name = re.sub(suffix, '', grad_name)
            break

    assert base_name in shard.global_param2device, "[{}] should be a param variable.".format(
        base_name)

    return shard.global_param2device[base_name]


B
Baibaifan 已提交
491
def get_first_check_finite_and_unscale_op_idx(block, raise_error=True):
492 493 494 495 496

    for idx, op in enumerate(block.ops):
        if op.type == "check_finite_and_unscale":
            return idx

B
Baibaifan 已提交
497 498 499 500 501 502
    if raise_error:
        raise ValueError(
            "amp is turned on but check_finite_and_unscale op does not exist in main block"
        )

    return -1
503 504


505 506 507 508 509 510 511 512 513
def get_first_optimize_op_idx(block):
    first_opt_op_idx = None
    for index, op in reversed(tuple(enumerate(block.ops))):
        if is_backward_op(op) and first_opt_op_idx is None:
            first_opt_op_idx = index + 1
            break
    return first_opt_op_idx


514
def insert_broadcast_ops(block, insert_idx, ring_id, broadcast2root):
515 516 517
    """
    _add_broadcast_ops
    """
J
JZ-LIANG 已提交
518
    op_role = get_valid_op_role(block, insert_idx)
519 520 521 522 523 524 525 526 527 528 529
    for broadcast_name, root_device in broadcast2root:
        block._insert_op_without_sync(
            insert_idx,
            type='c_broadcast',
            inputs={'X': broadcast_name},
            outputs={'Out': broadcast_name},
            attrs={
                'ring_id': ring_id,
                'root': root_device,
                OP_ROLE_KEY: op_role
            })
530

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
    return


DtypeToSize = {
    core.VarDesc.VarType.FP16: 2,
    core.VarDesc.VarType.FP32: 4,
    core.VarDesc.VarType.FP64: 8,
    core.VarDesc.VarType.INT16: 2,
    core.VarDesc.VarType.INT32: 4,
    core.VarDesc.VarType.INT64: 8,
    core.VarDesc.VarType.BOOL: 1,
    core.VarDesc.VarType.UINT8: 1,
}


def get_var_size(param):
    """
    input:
        - param: var
    return:
J
JZ-LIANG 已提交
551
        var size in MB
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
    """
    assert -1 not in param.shape
    return reduce(lambda x, y: x * y,
                  param.shape) * DtypeToSize[param.dtype] / 1024.0 / 1024.0


def insert_scale_loss_grad_ops(block, scale=1.0):
    '''
    In order to keep the learning rate consistent in different numbers of
    training workers, we scale the loss grad by the number of workers
    '''
    for idx, op in reversed(list(enumerate(block.ops))):
        if is_loss_grad_op(op):
            loss_grad_var = block.vars[op.output_arg_names[0]]
            block._insert_op_without_sync(
                idx + 1,
                type='scale',
                inputs={'X': loss_grad_var},
                outputs={'Out': loss_grad_var},
                attrs={'scale': scale,
                       OP_ROLE_KEY: OpRole.Backward})
573
            break
J
JZ-LIANG 已提交
574 575 576 577 578 579 580 581 582 583 584 585


def comm_analyse(main_program):
    """
    Analyse the parameter size that need to be broadcast/allreduce during sharding training 
    """
    reduce_vars = {}
    broadcast_vars = {}
    block = main_program.global_block()
    for op in block.ops:
        if op.type == "c_broadcast":
            var_name = op.desc.input_arg_names()[0]
J
JZ-LIANG 已提交
586 587 588
            # convert MB to KB
            broadcast_vars[var_name] = get_var_size(block.var(
                var_name)) * 1024.0
J
JZ-LIANG 已提交
589 590
        elif op.type == "c_allreduce_sum":
            var_name = op.desc.input_arg_names()[0]
J
JZ-LIANG 已提交
591
            reduce_vars[var_name] = get_var_size(block.var(var_name)) * 1024.0
J
JZ-LIANG 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617

    varsize_count = {}
    gap = 1

    for k, v in broadcast_vars.items():
        print("broadcast: {}: {} KB".format(k, v))
        if (int(v / gap) in varsize_count):
            varsize_count[int(v / gap)] += 1
        else:
            varsize_count[int(v / gap)] = 1

    for k, v in reduce_vars.items():
        print("allreduce: {}: {} KB".format(k, v))
        if (int(v / gap) in varsize_count):
            varsize_count[int(v / gap)] += 1
        else:
            varsize_count[int(v / gap)] = 1

    with open("nccl_size.txt", 'w') as f:
        sorted_varsize = sorted(varsize_count.items(), key=lambda x: x[0])
        for varsize, count in sorted_varsize:
            print("NCCL size {}~{} KB: {}".format(varsize, varsize + 1, count))
            f.write("NCCL size {}~{} KB: {}\n".format(varsize, varsize + 1,
                                                      count))


618
def add_sync_comm(program, sharding_ring_id):
J
JZ-LIANG 已提交
619 620 621 622 623 624
    """
    When clone a test prog by clone from the sharding main prog, 
    part of the sync_comm op maybe be pruned by mistake, this function
    add the sync_comm op for the test prog.

    """
625
    #NOTE (liangjianzhong): only support one comm stream by now, use more than one
J
JZ-LIANG 已提交
626 627
    # comm streams will cause error. should be revise in future.

628
    assert sharding_ring_id >= 0, "sharding_ring_id should larger than zero"
J
JZ-LIANG 已提交
629 630 631 632 633 634 635 636 637 638
    block = program.global_block()
    not_sync_vars = set([])
    for op in block.ops:
        if op.type in ["c_broadcast", "c_allreduce"]:
            for input_name in op.desc.input_arg_names():
                not_sync_vars.add(input_name)
        if op.type == "c_sync_comm_stream":
            for input_name in op.desc.input_arg_names():
                not_sync_vars.remove(input_name)
    if not_sync_vars:
639 640 641 642 643 644 645 646
        block.append_op(
            type='c_sync_comm_stream',
            inputs={'X': list(not_sync_vars)},
            outputs={'Out': list(not_sync_vars)},
            attrs={
                'ring_id': sharding_ring_id,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            })
J
JZ-LIANG 已提交
647 648 649
    return


J
JZ-LIANG 已提交
650
def save_persistables(exe, dirname, main_program, filename=None):
J
JZ-LIANG 已提交
651 652 653 654 655
    """
    When use sharding, part of persistable vars are unique and are partitioned in different ranks,
    and part of persistable vars are duplicated and exist in all the ranks with different values.
    This function handles the model saving for sharding training.
    """
656 657
    # TODO (JZ-LIANG) revise this for uniform mixed parallelism
    if main_program._pipeline_opt:
L
lilong12 已提交
658
        main_program = main_program._pipeline_opt['section_program']
J
JZ-LIANG 已提交
659 660

    def is_opt_vars(var):
661
        # NOTE(JZ-LIANG): The checks should be updated when add new compatible optimizer
J
JZ-LIANG 已提交
662 663 664 665 666 667 668 669 670 671
        # now only Momentum and adam are compatible with sharding
        checks = [
            "_moment1_0", "_moment2_0", "_beta1_pow_acc_0", "_beta2_pow_acc_0",
            "_velocity_0"
        ]
        for check in checks:
            if var.name.endswith(check):
                return True
        return False

672 673 674 675 676
    def is_gradient_merge_vars(var):
        # NOTE(JZ-LIANG): to revise save/load logic in framework instead of write this naive rule

        return var.name.endswith("@GradiantMerge")

J
JZ-LIANG 已提交
677 678 679 680 681
    def is_trainable(var):
        return isinstance(var,
                          paddle.fluid.framework.Parameter) and var.trainable

    def sharding_predicate(var):
682 683
        return is_trainable(var) or is_opt_vars(var) or is_gradient_merge_vars(
            var)
J
JZ-LIANG 已提交
684 685 686 687 688 689 690 691 692 693 694 695 696

    if int(os.environ.get('PADDLE_TRAINER_ID', 0)) == 0:
        paddle.fluid.io.save_persistables(
            exe, dirname, main_program=main_program, filename=None)
    else:
        paddle.fluid.io.save_vars(
            exe,
            dirname,
            main_program=main_program,
            predicate=sharding_predicate,
            filename=None)

    return
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718


def append_naive_sync(block, sync_var, ring_id):
    # NOTE (JZ-LIANG) update this to use barrier sync for more elegent logic
    # sync within global 
    block.append_op(
        type="fill_constant",
        outputs={"Out": sync_var},
        attrs={
            "shape": sync_var.shape,
            "dtype": sync_var.dtype,
            "value": int(1),
        })
    block.append_op(
        type='c_allreduce_sum',
        inputs={'X': sync_var},
        outputs={'Out': sync_var},
        attrs={
            'ring_id': ring_id,
            'use_calc_stream': True,
            OP_ROLE_KEY: OpRole.Forward
        })
719 720 721 722 723
    block.append_op(
        type='c_sync_calc_stream',
        inputs={'X': [sync_var]},
        outputs={'Out': [sync_var]},
        attrs={OP_ROLE_KEY: OpRole.Forward})