utils.py 9.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid import core
from functools import reduce
from paddle.distributed.fleet.meta_optimizers.common import is_loss_grad_op
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY

import re


def check_broadcast(block):
    """
    if a var is broadcasted, it should have a sync_comm before
    this var is used, if not, raise error.
    if the broadcasted var has a fill_constant op, the fill_constant
    op should stay forward before the broadcast op, and before a
    sync_calc op. Otherwise, raise error.
    """
    broadcast_vars = {}
    for idx, op in enumerate(block.ops):
        if op.type == "c_broadcast":
            var_name = op.desc.input_arg_names()[0]
            if "@BroadCast" in var_name:
                if var_name in broadcast_vars:
                    raise ValueError("var_name areadly exist: {}"
                                     "the old pos is {}, the new pos is {}".
                                     format(var_name, broadcast_vars[var_name][
                                         "broadcast_pos"], idx))
                broadcast_vars[var_name] = {
                    "fill_constant_pos": -1,
                    "broadcast_pos": idx,
                }

    for idx, op in enumerate(block.ops):
        if op.type == "fill_constant":
            var_name = op.desc.output_arg_names()[0]
            if var_name in broadcast_vars:
                broadcast_vars[var_name]["fill_constant_pos"] = idx
            continue

    last_sync_comm_op_idx = -1
    last_sync_calc_op_idx = -1
    for idx, op in enumerate(block.ops):
        if op.type == "c_sync_comm_stream":
            last_sync_comm_op_idx = idx
            continue
        if op.type == "c_sync_calc_stream":
            last_sync_calc_op_idx = idx
            continue
        if op.type == "c_broadcast":
            var_name = op.desc.input_arg_names()[0]
            if "@BroadCast" in var_name:
                if broadcast_vars[var_name]["fill_constant_pos"] != -1:
                    assert (last_sync_calc_op_idx != -1)
                    assert (broadcast_vars[var_name]["fill_constant_pos"] <
                            last_sync_calc_op_idx)
                    assert (last_sync_calc_op_idx < idx)
                continue
        for input_name in op.desc.input_arg_names():
            if input_name in broadcast_vars:
                assert (broadcast_vars[input_name]["broadcast_pos"] != -1)
                assert (broadcast_vars[input_name]["broadcast_pos"] <
                        last_sync_comm_op_idx)
                assert (last_sync_comm_op_idx < idx)
    return


def check_allreduce_sum(block):
    """
    if a Var is allreduced, the op order should be:
        - 0: op that generate Var
        - 1: sync_calc
        - 2: allreduce_sum op
        - 3: sync_comm
        - 4: op that use Var
    """
    var_status = {}
    for op in block.ops:
        if op.type == "c_allreduce_sum":
            var_name = op.desc.input_arg_names()[0]
            var_status[var_name] = -1

    for op in block.ops:
        if op.type == "c_sync_calc_stream":
            for var_name in var_status:
                if var_name in var_status and var_status[var_name] == 0:
                    var_status[var_name] = 1
        elif op.type == "c_allreduce_sum":
            var_name = op.desc.input_arg_names()[0]
            if var_status[var_name] == -1:
                raise ValueError("{} is not generated, but you are"
                                 "trying to all-reduce it".format(var_name))
            if var_status[var_name] == 0:
                raise ValueError("There should be a sync_calc op "
                                 "after generate Var: {} and before the"
                                 "c_allreduce_sum op".format(var_name))
            assert (var_status[var_name] == 1)
            var_status[var_name] = 2
        elif op.type == "c_sync_comm_stream":
            for var_name in op.desc.input_arg_names():
                if var_name in var_status and var_status[var_name] == 2:
                    var_status[var_name] = 3
        else:
            for input_name in op.desc.input_arg_names():
                if input_name in var_status:
                    if var_status[input_name] != 3:
                        raise ValueError("There should be a sync_comm op "
                                         "after allreduce the Var: {}".format(
                                             var_name))
            for output_name in op.desc.output_arg_names():
                if output_name in var_status and \
                    var_status[output_name] == -1:
                    var_status[output_name] = 0
    return


def insert_sync_calc_op(block, insert_idx, calc_dep_vars):
    """
    _insert_sync_calc_op
    """
    op_role = block.ops[insert_idx].attr('op_role')
    block._insert_op_without_sync(
        insert_idx,
        type='c_sync_calc_stream',
        inputs={'X': calc_dep_vars},
        outputs={'Out': calc_dep_vars},
        attrs={OP_ROLE_KEY: op_role})
    return


def insert_sync_comm_ops(block, insert_idx, nrings, comm_dep_vars):
    """
    _insert_sync_comm_ops
    """
    op_role = block.ops[insert_idx].attr('op_role')
    for i in range(nrings):
        block._insert_op_without_sync(
            insert_idx,
            type='c_sync_comm_stream',
            inputs={'X': comm_dep_vars},
            outputs={'Out': comm_dep_vars},
            attrs={'ring_id': i,
                   OP_ROLE_KEY: op_role})
    return nrings


def insert_fill_constant_ops(block, insert_idx, fill_constant_vars):
    """
    _add_fill_constant_ops
    """
    op_role = block.ops[insert_idx].attr('op_role')
    for broadcast_name in fill_constant_vars:
        broadcast_var = block.var(broadcast_name)
        block._insert_op_without_sync(
            insert_idx,
            type="fill_constant",
            outputs={"Out": broadcast_var.name},
            attrs={
                "shape": broadcast_var.shape,
                "dtype": broadcast_var.dtype,
                "value": 0.0,
                OP_ROLE_KEY: op_role
            })
    return


def insert_cast_ops(block, insert_idx, cast_ops):
    """
    _add_cast_ops
    """
    op_role = block.ops[insert_idx].attr('op_role')
    for fp16_name, fp32_name in cast_ops.items():
        block._insert_op_without_sync(
            insert_idx,
            type="cast",
            inputs={"X": fp32_name},
            outputs={"Out": fp16_name},
            attrs={
                "in_dtype": core.VarDesc.VarType.FP32,
                "out_dtype": core.VarDesc.VarType.FP16,
                OP_ROLE_KEY: op_role
            })
    return


def insert_allreduce_ops(block, insert_idx, nrings, allreduce_vars):
    """
    _add_allreduce_ops
    """
    ring_id = -1
    for var in allreduce_vars:
        ring_id = (ring_id + 1) % nrings
        block._insert_op_without_sync(
            insert_idx,
            type='c_allreduce_sum',
            inputs={'X': var},
            outputs={'Out': var},
            attrs={'ring_id': ring_id,
                   OP_ROLE_KEY: OpRole.Backward})
    return


def insert_broadcast_ops(block, insert_idx, nrings, broadcast2root):
    """
    _add_broadcast_ops
    """
    ring_id = -1
    op_role = block.ops[insert_idx].attr('op_role')
    for broadcast_name, root_device in broadcast2root:
        ring_id = (ring_id + 1) % nrings
        block._insert_op_without_sync(
            insert_idx,
            type='c_broadcast',
            inputs={'X': broadcast_name},
            outputs={'Out': broadcast_name},
            attrs={
                'ring_id': ring_id,
                'root': root_device,
                OP_ROLE_KEY: op_role
            })
    return


DtypeToSize = {
    core.VarDesc.VarType.FP16: 2,
    core.VarDesc.VarType.FP32: 4,
    core.VarDesc.VarType.FP64: 8,
    core.VarDesc.VarType.INT16: 2,
    core.VarDesc.VarType.INT32: 4,
    core.VarDesc.VarType.INT64: 8,
    core.VarDesc.VarType.BOOL: 1,
    core.VarDesc.VarType.UINT8: 1,
}


def get_var_size(param):
    """
    input:
        - param: var
    return:
        var size in Bytes
    """
    assert -1 not in param.shape
    return reduce(lambda x, y: x * y,
                  param.shape) * DtypeToSize[param.dtype] / 1024.0 / 1024.0


def insert_scale_loss_grad_ops(block, scale=1.0):
    '''
    In order to keep the learning rate consistent in different numbers of
    training workers, we scale the loss grad by the number of workers
    '''
    for idx, op in reversed(list(enumerate(block.ops))):
        if is_loss_grad_op(op):
            loss_grad_var = block.vars[op.output_arg_names[0]]
            block._insert_op_without_sync(
                idx + 1,
                type='scale',
                inputs={'X': loss_grad_var},
                outputs={'Out': loss_grad_var},
                attrs={'scale': scale,
                       OP_ROLE_KEY: OpRole.Backward})