utils.py 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function, absolute_import
import os
import sys
import logging
import subprocess
import numpy as np
from collections import OrderedDict
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.log_helper import get_logger

from google.protobuf import text_format
from paddle.fluid import debugger
from paddle.fluid.framework import Program
from paddle.fluid.proto import framework_pb2

__all__ = [
    "load_program", "save_program", "program_type_trans",
    "check_saved_vars_try_dump", "parse_program", "check_pruned_program_vars",
    "graphviz"
]

logger = logging.getLogger(__name__)
38 39 40 41 42
logger.setLevel(logging.INFO)
formatter = logging.Formatter(fmt='%(asctime)s - %(levelname)s - %(message)s')
ch = logging.StreamHandler()
ch.setFormatter(formatter)
logger.addHandler(ch)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431

persistable_vars_out_fn = "vars_persistable.log"
all_vars_out_fn = "vars_all.log"
ops_out_fn = "ops.log"

feed_fetch_type_list = [
    core.VarDesc.VarType.FEED_MINIBATCH, core.VarDesc.VarType.FETCH_LIST
]
not_expected_op_types = ["lookup_table"]


def load_program(model_filename, is_text=False):
    if is_text:
        return load_program_text(model_filename)
    return load_program_binary(model_filename)


def load_program_binary(model_filename):
    """load program from binary string file"""
    with open(model_filename, "rb") as f:
        program_desc_str = f.read()
    return Program.parse_from_string(program_desc_str)


def load_program_text(model_filename):
    """load program from human-readable text file"""
    with open(model_filename, "r") as f:
        program_desc_text = f.read()

    prog_desc = framework_pb2.ProgramDesc()
    text_format.Merge(program_desc_text, prog_desc)
    return Program.parse_from_string(prog_desc.SerializeToString())


def save_program(program, model_filename='__model__', is_text=False):
    if is_text:
        with open(model_filename, "w") as f:
            f.write(str(program))
    else:
        with open(model_filename, "wb") as f:
            f.write(program.desc.serialize_to_string())


def check_pruned_program_vars(train_prog, pruned_prog):
    is_match = True

    pruned_vars = [(v.name, v) for v in pruned_prog.list_vars()
                   if fluid.io.is_persistable(v)]
    pruned_vars = OrderedDict(pruned_vars)
    pruned_vars_name = [name for name in pruned_vars]
    logger.info("persistable vars in pruned program: {}".format(
        pruned_vars_name))

    for var_name in pruned_vars:
        var = pruned_vars[var_name]
        # feed and fetch op is added in pruned program when pruning, not need to be found in train program
        if var.type in feed_fetch_type_list:
            break
        try:
            train_prog_var = train_prog.global_block().var(var_name)
        except ValueError as e:
            logger.error(
                "not find variable '%s' in train program. please check pruning."
                % var_name)
            logger.error(e)
            continue
        if var.shape != train_prog_var.shape or var.dtype != train_prog_var.dtype:
            logger.error(
                "variable: {} not match. in pruned program shape: {} dtype:{}, in train program shape: {} dtype: {}".
                format(var_name, var.shape, var.dtype, train_prog_var.shape,
                       train_prog_var.dtype))
            is_match = False
    return is_match


def graphviz(block, output_dir="", filename='debug'):
    dot_path = os.path.join(output_dir, filename + '.dot')
    pdf_path = os.path.join(output_dir, filename + '.pdf')
    debugger.draw_block_graphviz(block, path=dot_path)
    cmd = ["dot", "-Tpdf", dot_path, "-o", pdf_path]
    p = subprocess.Popen(
        cmd,
        stdin=subprocess.PIPE,
        stdout=subprocess.PIPE,
        stderr=subprocess.PIPE)
    p.wait()


def program_type_trans(prog_dir, prog_fn, is_text):
    prog = load_program(os.path.join(prog_dir, prog_fn), is_text)
    prog_out_fn = prog_fn + ".bin" if is_text else prog_fn + ".pbtxt"
    save_program(prog, os.path.join(prog_dir, prog_out_fn), 1 - is_text)
    return prog_out_fn


def append_save_op(block, var, path):
    block.append_op(
        type='save', inputs={'X': [var]}, outputs={},
        attrs={'file_path': path})


def append_load_op(block, var, path):
    block.append_op(
        type='load',
        inputs={},
        outputs={'Out': [var]},
        attrs={'file_path': path})


def save_var(np_array, var_name, shape_list, dtype, save_path):
    program = fluid.Program()
    place = fluid.CPUPlace()
    exe = fluid.Executor(place)
    with fluid.program_guard(program):
        d0_data = fluid.layers.data(var_name, shape=shape_list, dtype=dtype)
        append_save_op(program.global_block(), d0_data, save_path)
        exe.run(feed={var_name: np_array}, fetch_list=[])


def load_var(var_name, shape_list, dtype, save_path):
    program = fluid.Program()
    place = fluid.CPUPlace()
    exe = fluid.Executor(place)
    with fluid.program_guard(program):
        d0_data = fluid.layers.data(var_name, shape=shape_list, dtype=dtype)
        append_load_op(program.global_block(), d0_data, save_path)
        outs = exe.run(feed={}, fetch_list=[d0_data])
        return outs


def reader(batch_size, fn, dim):
    data = []
    if isinstance(dim, list) or isinstance(dim, tuple):
        shape = list(dim)
        _temp = 1
        for x in dim:
            _temp = _temp * x
        dim = _temp
    else:
        shape = [dim]

    shape = [batch_size] + shape
    dim = dim * batch_size

    for line in open(fn, 'r'):
        fields = line.strip().split(' ')
        fields = [float(d) for d in fields]
        while len(fields) >= dim:
            tmp = fields[:dim]
            fields = fields[dim:]
            data.append(np.array(tmp).reshape(shape))
    return data


def feed_gen(batch_size, feeded_vars_dims, feeded_vars_filelist):
    batch_feed = []
    for i, fn in enumerate(feeded_vars_filelist):
        batch_feed.append(reader(batch_size, fn, feeded_vars_dims[i]))
    return batch_feed


def try_load_model_vars(dump_dir, dump_prog_fn, is_text_dump_program,
                        batch_size, feed_config, fetch_config, save_filename,
                        saved_params):
    place = fluid.CPUPlace()
    exe = fluid.Executor(place)
    scope = fluid.core.Scope()
    with fluid.scope_guard(scope):
        if is_text_dump_program:
            dump_prog_fn = program_type_trans(dump_dir, dump_prog_fn,
                                              is_text_dump_program)
        inference_program, feed_target_names, fetch_targets = \
            fluid.io.load_inference_model(dump_dir, exe, model_filename=dump_prog_fn,
                                          params_filename=save_filename)

        # check program vars and saved vars shape
        orig_para_shape = {
            each_var.name: tuple(each_var.desc.shape())
            for each_var in saved_params
        }
        for each_var in saved_params:
            var_temp = fluid.global_scope().find_var(each_var.name)
            assert var_temp != None, "can't not find var: " + each_var.name
            new_shape = (np.array(var_temp.get_tensor())).shape
            assert each_var.name in orig_para_shape, each_var.name + "MUST in var list"
            orig_shape = orig_para_shape.get(each_var.name)
            if new_shape != orig_shape:
                raise RuntimeError(
                    "Shape not matching: the Program requires a parameter with a shape of ({}), "
                    "while the loaded parameter (namely [ {} ]) has a shape of  ({}).".
                    format(orig_shape, each_var.name, new_shape))

        # check feed/fetch vars in program and config
        fetch_targets_names = [v.name for v in fetch_targets]
        if not feed_target_names:
            logger.warning("no feed targets in program.")
        if not fetch_targets_names:
            logger.warning("no fetch targets in program.")
        fetch_list = fetch_targets
        feed_name_list = feed_target_names
        if feed_config.feeded_vars_names is not None and feed_target_names != feed_config.feeded_vars_names:
            logger.warning(
                "feed vars in program and config are diff: feed in program: {}. feed in config {}.".
                format(feed_target_names, feed_config.feeded_vars_names))
            feed_name_list = feed_config.feeded_vars_names
            # remove feed op in inference_program. new feed op will be added in exe.run
            global_block = inference_program.global_block()
            need_to_remove_op_index = []
            for i, op in enumerate(global_block.ops):
                op.desc.set_is_target(False)
                if op.type == "feed":  # only remove feed op here
                    need_to_remove_op_index.append(i)
            for index in need_to_remove_op_index[::-1]:
                global_block._remove_op(index)
        if fetch_config.fetch_vars_names is not None and fetch_targets_names != fetch_config.fetch_vars_names:
            logger.warning(
                "fetch vars in program and config are diff: fetch in program: {}. fetch in config {}.".
                format(fetch_targets_names, fetch_config.fetch_vars_names))
            fetch_list = [
                inference_program.global_block().var(i)
                for i in fetch_config.fetch_vars_names
            ]
            # remove fetch op in inference_program. new fetch op will be added in exe.run
            global_block = inference_program.global_block()
            need_to_remove_op_index = []
            for i, op in enumerate(global_block.ops):
                op.desc.set_is_target(False)
                if op.type == "fetch":  # only remove fetch op here
                    need_to_remove_op_index.append(i)
            for index in need_to_remove_op_index[::-1]:
                global_block._remove_op(index)

        # if fetch_list have lod tensor
        return_numpy = all([v.lod_level == 0 for v in fetch_list])

        # try dump fetch_targets
        feed_tensors = []
        assert len(feed_config.feeded_vars_names) == len(
            feed_config.feeded_vars_dims) == len(feed_config.feeded_vars_types)
        # check program vars and feed tensor shape in config
        for i in range(len(feed_config.feeded_vars_names)):
            var = inference_program.global_block().var(
                feed_config.feeded_vars_names[i])
            if not isinstance(feed_config.feeded_vars_dims[i], (list, tuple)):
                tensor_shape = (feed_config.feeded_vars_dims[i], )
            else:
                tensor_shape = tuple(feed_config.feeded_vars_dims[i])
            feed_config.feeded_vars_dims[i] = tensor_shape
            var_shape = var.shape[1:]
            if tensor_shape != var_shape:
                raise RuntimeError(
                    "feed variable '{}' shape not match. infer program  shape: {}. feed tensor shape: {}".
                    format(feed_config.feeded_vars_names[i], var_shape,
                           tensor_shape))

        if not feed_config.feeded_vars_filelist:
            logger.info("generate random feed vars.")
            for i in range(len(feed_config.feeded_vars_names)):
                var = inference_program.global_block().var(
                    feed_config.feeded_vars_names[i])
                # create fake feed tensor. if lod_level > 1, should create_lod_tensor()
                if var.lod_level == 0:
                    feed_tensors.append(
                        np.array(
                            np.random.random(
                                tuple([batch_size] + list(
                                    feed_config.feeded_vars_dims[i]))),
                            dtype=feed_config.feeded_vars_types[i]))
                elif var.lod_level == 1:
                    t = np.array(
                        np.random.random(
                            tuple([batch_size] + list(
                                feed_config.feeded_vars_dims[i]))),
                        dtype=feed_config.feeded_vars_types[i])
                    feed_tensors.append(
                        fluid.create_lod_tensor(t, [[1] * batch_size], place))
                else:
                    raise RuntimeError(
                        "vars with lod_level >= 2 is not supported now in this infer program check tool."
                    )
            results = exe.run(inference_program,
                              feed={
                                  name: feed_tensors[i]
                                  for i, name in enumerate(feed_name_list)
                              },
                              fetch_list=fetch_list,
                              return_numpy=return_numpy)
        else:
            logger.info("load feed vars from files: {}.".format(
                feed_config.feeded_vars_filelist))
            feed_vars = [
                inference_program.global_block().var(
                    feed_config.feeded_vars_names[i])
                for i in range(len(feed_config.feeded_vars_names))
            ]
            feeder = fluid.DataFeeder(feed_list=feed_vars, place=place)
            batch_feed = feed_gen(batch_size, feed_config.feeded_vars_dims,
                                  feed_config.feeded_vars_filelist)
            slots = [batch_feed]
            results = exe.run(inference_program,
                              feed=feeder.feed(slots),
                              fetch_list=fetch_list,
                              return_numpy=return_numpy)
        for i, v in enumerate(fetch_list):
            logger.info("fetch_targets name: %s" % v.name)
            logger.info("fetch_targets: {}".format(results[i]))
        return results


def check_not_expected_ops(prog):
    op_types_set = set()
    for op in prog.global_block().ops:
        if op.type in not_expected_op_types and op.type not in op_types_set:
            logger.warning(
                "find op type '{}' in program, please check if your program is pruned correctly !".
                format(op.type))
            op_types_set.add(op.type)


def check_saved_vars_try_dump(dump_dir,
                              dump_prog_fn,
                              is_text_dump_program,
                              feed_config,
                              fetch_config,
                              batch_size=1,
                              save_filename=None):
    dump_prog = load_program(
        os.path.join(dump_dir, dump_prog_fn), is_text_dump_program)
    saved_params = [
        v for v in dump_prog.list_vars() if fluid.io.is_persistable(v)
    ]
    logger.info("persistable vars in dump program: {}".format(
        [v.name for v in saved_params]))

    check_not_expected_ops(dump_prog)

    return try_load_model_vars(dump_dir, dump_prog_fn, is_text_dump_program,
                               batch_size, feed_config, fetch_config,
                               save_filename, saved_params)


def parse_program(program, output_dir):
    # persistable vars
    output = {}
    persistable_vars = [
        v for v in program.list_vars() if fluid.io.is_persistable(v)
    ]
    output["persistable_vars"] = [{
        'name': str(v.name),
        'shape': str(v.shape),
        'lod_level': int(v.lod_level),
        'dtype': str(v.dtype),
        'type': str(v.type)
    } for v in persistable_vars]
    with open(os.path.join(output_dir, persistable_vars_out_fn), 'w') as f:
        f.write("persistable vars:\n")
        for var in output["persistable_vars"]:
            f.write(str(var))
            f.write("\n")

    # all vars
    all_vars = [v for v in program.list_vars()]
    output["all_vars"] = [{
        'name': str(v.name),
        'shape': str(v.shape),
        'lod_level': int(v.lod_level),
        'dtype': str(v.dtype)
    } if v.type not in feed_fetch_type_list else {
        'name': str(v.name),
        'type': str(v.type)
    } for v in all_vars]
    with open(os.path.join(output_dir, all_vars_out_fn), 'w') as f:
        f.write("all vars:\n")
        for var in output["all_vars"]:
            f.write(str(var))
            f.write("\n")

    # ops
    ops = program.global_block().ops
    output["ops"] = [{
        'type': op.type,
        'input_arg_names': str(op.input_arg_names),
        'output_arg_names': str(op.output_arg_names)
    } for op in ops]
    with open(os.path.join(output_dir, ops_out_fn), 'w') as f:
        f.write("ops:\n")
        for op in output["ops"]:
            f.write(str(op))
            f.write("\n")