Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
e59463ef
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e59463ef
编写于
2月 16, 2020
作者:
1
123malin
提交者:
GitHub
2月 16, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test=develop, add distributed tools (#22623)
上级
1aab3e61
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
698 addition
and
1 deletion
+698
-1
python/paddle/fluid/incubate/fleet/utils/fleet_barrier_util.py
...n/paddle/fluid/incubate/fleet/utils/fleet_barrier_util.py
+1
-0
python/paddle/fluid/incubate/fleet/utils/fleet_util.py
python/paddle/fluid/incubate/fleet/utils/fleet_util.py
+81
-1
python/paddle/fluid/incubate/fleet/utils/utils.py
python/paddle/fluid/incubate/fleet/utils/utils.py
+428
-0
python/paddle/fluid/tests/unittests/test_fleet_utils.py
python/paddle/fluid/tests/unittests/test_fleet_utils.py
+188
-0
未找到文件。
python/paddle/fluid/incubate/fleet/utils/fleet_barrier_util.py
浏览文件 @
e59463ef
...
...
@@ -15,6 +15,7 @@
from
paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler
import
fleet
from
paddle.fluid.contrib.utils
import
HDFSClient
import
os
import
time
def
check_all_trainers_ready
(
ready_path
,
epoch
):
...
...
python/paddle/fluid/incubate/fleet/utils/fleet_util.py
浏览文件 @
e59463ef
...
...
@@ -23,15 +23,19 @@ import sys
import
time
import
paddle.fluid
as
fluid
from
paddle.fluid.log_helper
import
get_logger
from
paddle.fluid.incubate.fleet.parameter_server.pslib
import
fleet
from
paddle.fluid.incubate.fleet.parameter_server.pslib
import
fleet
as
fleet_pslib
from
paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler
import
fleet
as
fleet_transpiler
from
.
import
hdfs
from
.hdfs
import
*
from
.
import
utils
__all__
=
[
"FleetUtil"
]
_logger
=
get_logger
(
__name__
,
logging
.
INFO
,
fmt
=
'%(asctime)s-%(levelname)s: %(message)s'
)
fleet
=
fleet_pslib
class
FleetUtil
(
object
):
"""
...
...
@@ -46,6 +50,16 @@ class FleetUtil(object):
"""
def
__init__
(
self
,
mode
=
"pslib"
):
global
fleet
if
mode
==
"pslib"
:
fleet
=
fleet_pslib
elif
mode
==
"transpiler"
:
fleet
=
fleet_transpiler
else
:
raise
ValueError
(
"Please choose one mode from [
\"
pslib
\"
,
\"
transpiler
\"
]"
)
def
rank0_print
(
self
,
s
):
"""
Worker of rank 0 print some log.
...
...
@@ -1535,3 +1549,69 @@ class FleetUtil(object):
(
print_prefix
,
auc
,
bucket_error
,
mae
,
rmse
,
actual_ctr
,
predicted_ctr
,
copc
,
mean_predict_qvalue
,
total_ins_num
))
def
program_type_trans
(
self
,
prog_dir
,
prog_fn
,
is_text
):
return
utils
.
program_type_trans
(
prog_dir
,
prog_fn
,
is_text
)
def
draw_from_program_file
(
self
,
model_filename
,
is_text
,
output_dir
,
output_filename
):
"""draw program from file"""
program
=
utils
.
load_program
(
model_filename
,
is_text
)
utils
.
graphviz
(
program
.
global_block
(),
output_dir
,
output_filename
)
def
draw_from_program
(
self
,
program
,
output_dir
,
output_name
):
"""draw Program"""
utils
.
graphviz
(
program
.
global_block
(),
output_dir
,
output_name
)
def
check_two_programs
(
self
,
config
):
train_prog
=
utils
.
load_program
(
config
.
train_prog_path
,
config
.
is_text_train_program
)
pruned_prog
=
utils
.
load_program
(
config
.
pruned_prog_path
,
config
.
is_text_pruned_program
)
if
config
.
draw
:
pruned_dir
=
os
.
path
.
dirname
(
config
.
pruned_prog_path
)
self
.
draw_from_program
(
pruned_prog
,
pruned_dir
,
config
.
draw_out_name
)
res
=
utils
.
check_pruned_program_vars
(
train_prog
,
pruned_prog
)
if
res
:
_logger
.
info
(
"check_programs succeed."
)
else
:
_logger
.
info
(
"check_programs failed. pruned program and train program not match!"
)
return
res
def
check_vars_and_dump
(
self
,
config
):
_logger
.
info
(
"start check_vars_and_dump."
)
results
=
utils
.
check_saved_vars_try_dump
(
config
.
dump_model_dir
,
config
.
dump_program_filename
,
config
.
is_text_dump_program
,
config
.
feed_config
,
config
.
fetch_config
,
config
.
batch_size
,
config
.
save_params_filename
)
_logger
.
info
(
"check_vars_and_dump succeed."
)
return
results
def
parse_program_proto
(
self
,
prog_path
,
is_text
,
output_dir
):
"""
Parse program.proto into a more readable format.
This function will generate three files:
output_dir/vars_all.log,
output_dir/vars_persistable.log,
output_dir/ops.log.
Args:
prog_path(str): proto file path to be parsed.
is_text(bool): proto file is human-readale format or not(binary).
output_dir(str): output dir.
Examples:
.. code-block:: python
from paddle.fluid.incubate.fleet.utils.fleet_util import FleetUtil
fleet_util = FleetUtil()
program_path = "./program.pbtxt"
is_text = True
output_dir = "/tmp/"
fleet_util.parse_program_proto(program_path, is_text, output_dir)
"""
program
=
utils
.
load_program
(
prog_path
,
is_text
)
utils
.
parse_program
(
program
,
output_dir
)
python/paddle/fluid/incubate/fleet/utils/utils.py
0 → 100644
浏览文件 @
e59463ef
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
,
absolute_import
import
os
import
sys
import
logging
import
subprocess
import
numpy
as
np
from
collections
import
OrderedDict
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
from
paddle.fluid.log_helper
import
get_logger
from
google.protobuf
import
text_format
from
paddle.fluid
import
debugger
from
paddle.fluid.framework
import
Program
from
paddle.fluid.proto
import
framework_pb2
__all__
=
[
"load_program"
,
"save_program"
,
"program_type_trans"
,
"check_saved_vars_try_dump"
,
"parse_program"
,
"check_pruned_program_vars"
,
"graphviz"
]
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(message)s'
,
level
=
logging
.
INFO
)
logger
=
logging
.
getLogger
(
__name__
)
persistable_vars_out_fn
=
"vars_persistable.log"
all_vars_out_fn
=
"vars_all.log"
ops_out_fn
=
"ops.log"
feed_fetch_type_list
=
[
core
.
VarDesc
.
VarType
.
FEED_MINIBATCH
,
core
.
VarDesc
.
VarType
.
FETCH_LIST
]
not_expected_op_types
=
[
"lookup_table"
]
def
load_program
(
model_filename
,
is_text
=
False
):
if
is_text
:
return
load_program_text
(
model_filename
)
return
load_program_binary
(
model_filename
)
def
load_program_binary
(
model_filename
):
"""load program from binary string file"""
with
open
(
model_filename
,
"rb"
)
as
f
:
program_desc_str
=
f
.
read
()
return
Program
.
parse_from_string
(
program_desc_str
)
def
load_program_text
(
model_filename
):
"""load program from human-readable text file"""
with
open
(
model_filename
,
"r"
)
as
f
:
program_desc_text
=
f
.
read
()
prog_desc
=
framework_pb2
.
ProgramDesc
()
text_format
.
Merge
(
program_desc_text
,
prog_desc
)
return
Program
.
parse_from_string
(
prog_desc
.
SerializeToString
())
def
save_program
(
program
,
model_filename
=
'__model__'
,
is_text
=
False
):
if
is_text
:
with
open
(
model_filename
,
"w"
)
as
f
:
f
.
write
(
str
(
program
))
else
:
with
open
(
model_filename
,
"wb"
)
as
f
:
f
.
write
(
program
.
desc
.
serialize_to_string
())
def
check_pruned_program_vars
(
train_prog
,
pruned_prog
):
is_match
=
True
pruned_vars
=
[(
v
.
name
,
v
)
for
v
in
pruned_prog
.
list_vars
()
if
fluid
.
io
.
is_persistable
(
v
)]
pruned_vars
=
OrderedDict
(
pruned_vars
)
pruned_vars_name
=
[
name
for
name
in
pruned_vars
]
logger
.
info
(
"persistable vars in pruned program: {}"
.
format
(
pruned_vars_name
))
for
var_name
in
pruned_vars
:
var
=
pruned_vars
[
var_name
]
# feed and fetch op is added in pruned program when pruning, not need to be found in train program
if
var
.
type
in
feed_fetch_type_list
:
break
try
:
train_prog_var
=
train_prog
.
global_block
().
var
(
var_name
)
except
ValueError
as
e
:
logger
.
error
(
"not find variable '%s' in train program. please check pruning."
%
var_name
)
logger
.
error
(
e
)
continue
if
var
.
shape
!=
train_prog_var
.
shape
or
var
.
dtype
!=
train_prog_var
.
dtype
:
logger
.
error
(
"variable: {} not match. in pruned program shape: {} dtype:{}, in train program shape: {} dtype: {}"
.
format
(
var_name
,
var
.
shape
,
var
.
dtype
,
train_prog_var
.
shape
,
train_prog_var
.
dtype
))
is_match
=
False
return
is_match
def
graphviz
(
block
,
output_dir
=
""
,
filename
=
'debug'
):
dot_path
=
os
.
path
.
join
(
output_dir
,
filename
+
'.dot'
)
pdf_path
=
os
.
path
.
join
(
output_dir
,
filename
+
'.pdf'
)
debugger
.
draw_block_graphviz
(
block
,
path
=
dot_path
)
cmd
=
[
"dot"
,
"-Tpdf"
,
dot_path
,
"-o"
,
pdf_path
]
p
=
subprocess
.
Popen
(
cmd
,
stdin
=
subprocess
.
PIPE
,
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
)
p
.
wait
()
def
program_type_trans
(
prog_dir
,
prog_fn
,
is_text
):
prog
=
load_program
(
os
.
path
.
join
(
prog_dir
,
prog_fn
),
is_text
)
prog_out_fn
=
prog_fn
+
".bin"
if
is_text
else
prog_fn
+
".pbtxt"
save_program
(
prog
,
os
.
path
.
join
(
prog_dir
,
prog_out_fn
),
1
-
is_text
)
return
prog_out_fn
def
append_save_op
(
block
,
var
,
path
):
block
.
append_op
(
type
=
'save'
,
inputs
=
{
'X'
:
[
var
]},
outputs
=
{},
attrs
=
{
'file_path'
:
path
})
def
append_load_op
(
block
,
var
,
path
):
block
.
append_op
(
type
=
'load'
,
inputs
=
{},
outputs
=
{
'Out'
:
[
var
]},
attrs
=
{
'file_path'
:
path
})
def
save_var
(
np_array
,
var_name
,
shape_list
,
dtype
,
save_path
):
program
=
fluid
.
Program
()
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
with
fluid
.
program_guard
(
program
):
d0_data
=
fluid
.
layers
.
data
(
var_name
,
shape
=
shape_list
,
dtype
=
dtype
)
append_save_op
(
program
.
global_block
(),
d0_data
,
save_path
)
exe
.
run
(
feed
=
{
var_name
:
np_array
},
fetch_list
=
[])
def
load_var
(
var_name
,
shape_list
,
dtype
,
save_path
):
program
=
fluid
.
Program
()
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
with
fluid
.
program_guard
(
program
):
d0_data
=
fluid
.
layers
.
data
(
var_name
,
shape
=
shape_list
,
dtype
=
dtype
)
append_load_op
(
program
.
global_block
(),
d0_data
,
save_path
)
outs
=
exe
.
run
(
feed
=
{},
fetch_list
=
[
d0_data
])
return
outs
def
reader
(
batch_size
,
fn
,
dim
):
data
=
[]
if
isinstance
(
dim
,
list
)
or
isinstance
(
dim
,
tuple
):
shape
=
list
(
dim
)
_temp
=
1
for
x
in
dim
:
_temp
=
_temp
*
x
dim
=
_temp
else
:
shape
=
[
dim
]
shape
=
[
batch_size
]
+
shape
dim
=
dim
*
batch_size
for
line
in
open
(
fn
,
'r'
):
fields
=
line
.
strip
().
split
(
' '
)
fields
=
[
float
(
d
)
for
d
in
fields
]
while
len
(
fields
)
>=
dim
:
tmp
=
fields
[:
dim
]
fields
=
fields
[
dim
:]
data
.
append
(
np
.
array
(
tmp
).
reshape
(
shape
))
return
data
def
feed_gen
(
batch_size
,
feeded_vars_dims
,
feeded_vars_filelist
):
batch_feed
=
[]
for
i
,
fn
in
enumerate
(
feeded_vars_filelist
):
batch_feed
.
append
(
reader
(
batch_size
,
fn
,
feeded_vars_dims
[
i
]))
return
batch_feed
def
try_load_model_vars
(
dump_dir
,
dump_prog_fn
,
is_text_dump_program
,
batch_size
,
feed_config
,
fetch_config
,
save_filename
,
saved_params
):
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
scope
):
if
is_text_dump_program
:
dump_prog_fn
=
program_type_trans
(
dump_dir
,
dump_prog_fn
,
is_text_dump_program
)
inference_program
,
feed_target_names
,
fetch_targets
=
\
fluid
.
io
.
load_inference_model
(
dump_dir
,
exe
,
model_filename
=
dump_prog_fn
,
params_filename
=
save_filename
)
# check program vars and saved vars shape
orig_para_shape
=
{
each_var
.
name
:
tuple
(
each_var
.
desc
.
shape
())
for
each_var
in
saved_params
}
for
each_var
in
saved_params
:
var_temp
=
fluid
.
global_scope
().
find_var
(
each_var
.
name
)
assert
var_temp
!=
None
,
"can't not find var: "
+
each_var
.
name
new_shape
=
(
np
.
array
(
var_temp
.
get_tensor
())).
shape
assert
each_var
.
name
in
orig_para_shape
,
each_var
.
name
+
"MUST in var list"
orig_shape
=
orig_para_shape
.
get
(
each_var
.
name
)
if
new_shape
!=
orig_shape
:
raise
RuntimeError
(
"Shape not matching: the Program requires a parameter with a shape of ({}), "
"while the loaded parameter (namely [ {} ]) has a shape of ({})."
.
format
(
orig_shape
,
each_var
.
name
,
new_shape
))
# check feed/fetch vars in program and config
fetch_targets_names
=
[
v
.
name
for
v
in
fetch_targets
]
if
not
feed_target_names
:
logger
.
warning
(
"no feed targets in program."
)
if
not
fetch_targets_names
:
logger
.
warning
(
"no fetch targets in program."
)
fetch_list
=
fetch_targets
feed_name_list
=
feed_target_names
if
feed_config
.
feeded_vars_names
is
not
None
and
feed_target_names
!=
feed_config
.
feeded_vars_names
:
logger
.
warning
(
"feed vars in program and config are diff: feed in program: {}. feed in config {}."
.
format
(
feed_target_names
,
feed_config
.
feeded_vars_names
))
feed_name_list
=
feed_config
.
feeded_vars_names
# remove feed op in inference_program. new feed op will be added in exe.run
global_block
=
inference_program
.
global_block
()
need_to_remove_op_index
=
[]
for
i
,
op
in
enumerate
(
global_block
.
ops
):
op
.
desc
.
set_is_target
(
False
)
if
op
.
type
==
"feed"
:
# only remove feed op here
need_to_remove_op_index
.
append
(
i
)
for
index
in
need_to_remove_op_index
[::
-
1
]:
global_block
.
_remove_op
(
index
)
if
fetch_config
.
fetch_vars_names
is
not
None
and
fetch_targets_names
!=
fetch_config
.
fetch_vars_names
:
logger
.
warning
(
"fetch vars in program and config are diff: fetch in program: {}. fetch in config {}."
.
format
(
fetch_targets_names
,
fetch_config
.
fetch_vars_names
))
fetch_list
=
[
inference_program
.
global_block
().
var
(
i
)
for
i
in
fetch_config
.
fetch_vars_names
]
# remove fetch op in inference_program. new fetch op will be added in exe.run
global_block
=
inference_program
.
global_block
()
need_to_remove_op_index
=
[]
for
i
,
op
in
enumerate
(
global_block
.
ops
):
op
.
desc
.
set_is_target
(
False
)
if
op
.
type
==
"fetch"
:
# only remove fetch op here
need_to_remove_op_index
.
append
(
i
)
for
index
in
need_to_remove_op_index
[::
-
1
]:
global_block
.
_remove_op
(
index
)
# if fetch_list have lod tensor
return_numpy
=
all
([
v
.
lod_level
==
0
for
v
in
fetch_list
])
# try dump fetch_targets
feed_tensors
=
[]
assert
len
(
feed_config
.
feeded_vars_names
)
==
len
(
feed_config
.
feeded_vars_dims
)
==
len
(
feed_config
.
feeded_vars_types
)
# check program vars and feed tensor shape in config
for
i
in
range
(
len
(
feed_config
.
feeded_vars_names
)):
var
=
inference_program
.
global_block
().
var
(
feed_config
.
feeded_vars_names
[
i
])
if
not
isinstance
(
feed_config
.
feeded_vars_dims
[
i
],
(
list
,
tuple
)):
tensor_shape
=
(
feed_config
.
feeded_vars_dims
[
i
],
)
else
:
tensor_shape
=
tuple
(
feed_config
.
feeded_vars_dims
[
i
])
feed_config
.
feeded_vars_dims
[
i
]
=
tensor_shape
var_shape
=
var
.
shape
[
1
:]
if
tensor_shape
!=
var_shape
:
raise
RuntimeError
(
"feed variable '{}' shape not match. infer program shape: {}. feed tensor shape: {}"
.
format
(
feed_config
.
feeded_vars_names
[
i
],
var_shape
,
tensor_shape
))
if
not
feed_config
.
feeded_vars_filelist
:
logger
.
info
(
"generate random feed vars."
)
for
i
in
range
(
len
(
feed_config
.
feeded_vars_names
)):
var
=
inference_program
.
global_block
().
var
(
feed_config
.
feeded_vars_names
[
i
])
# create fake feed tensor. if lod_level > 1, should create_lod_tensor()
if
var
.
lod_level
==
0
:
feed_tensors
.
append
(
np
.
array
(
np
.
random
.
random
(
tuple
([
batch_size
]
+
list
(
feed_config
.
feeded_vars_dims
[
i
]))),
dtype
=
feed_config
.
feeded_vars_types
[
i
]))
elif
var
.
lod_level
==
1
:
t
=
np
.
array
(
np
.
random
.
random
(
tuple
([
batch_size
]
+
list
(
feed_config
.
feeded_vars_dims
[
i
]))),
dtype
=
feed_config
.
feeded_vars_types
[
i
])
feed_tensors
.
append
(
fluid
.
create_lod_tensor
(
t
,
[[
1
]
*
batch_size
],
place
))
else
:
raise
RuntimeError
(
"vars with lod_level >= 2 is not supported now in this infer program check tool."
)
results
=
exe
.
run
(
inference_program
,
feed
=
{
name
:
feed_tensors
[
i
]
for
i
,
name
in
enumerate
(
feed_name_list
)
},
fetch_list
=
fetch_list
,
return_numpy
=
return_numpy
)
else
:
logger
.
info
(
"load feed vars from files: {}."
.
format
(
feed_config
.
feeded_vars_filelist
))
feed_vars
=
[
inference_program
.
global_block
().
var
(
feed_config
.
feeded_vars_names
[
i
])
for
i
in
range
(
len
(
feed_config
.
feeded_vars_names
))
]
feeder
=
fluid
.
DataFeeder
(
feed_list
=
feed_vars
,
place
=
place
)
batch_feed
=
feed_gen
(
batch_size
,
feed_config
.
feeded_vars_dims
,
feed_config
.
feeded_vars_filelist
)
slots
=
[
batch_feed
]
results
=
exe
.
run
(
inference_program
,
feed
=
feeder
.
feed
(
slots
),
fetch_list
=
fetch_list
,
return_numpy
=
return_numpy
)
for
i
,
v
in
enumerate
(
fetch_list
):
logger
.
info
(
"fetch_targets name: %s"
%
v
.
name
)
logger
.
info
(
"fetch_targets: {}"
.
format
(
results
[
i
]))
return
results
def
check_not_expected_ops
(
prog
):
op_types_set
=
set
()
for
op
in
prog
.
global_block
().
ops
:
if
op
.
type
in
not_expected_op_types
and
op
.
type
not
in
op_types_set
:
logger
.
warning
(
"find op type '{}' in program, please check if your program is pruned correctly !"
.
format
(
op
.
type
))
op_types_set
.
add
(
op
.
type
)
def
check_saved_vars_try_dump
(
dump_dir
,
dump_prog_fn
,
is_text_dump_program
,
feed_config
,
fetch_config
,
batch_size
=
1
,
save_filename
=
None
):
dump_prog
=
load_program
(
os
.
path
.
join
(
dump_dir
,
dump_prog_fn
),
is_text_dump_program
)
saved_params
=
[
v
for
v
in
dump_prog
.
list_vars
()
if
fluid
.
io
.
is_persistable
(
v
)
]
logger
.
info
(
"persistable vars in dump program: {}"
.
format
(
[
v
.
name
for
v
in
saved_params
]))
check_not_expected_ops
(
dump_prog
)
return
try_load_model_vars
(
dump_dir
,
dump_prog_fn
,
is_text_dump_program
,
batch_size
,
feed_config
,
fetch_config
,
save_filename
,
saved_params
)
def
parse_program
(
program
,
output_dir
):
# persistable vars
output
=
{}
persistable_vars
=
[
v
for
v
in
program
.
list_vars
()
if
fluid
.
io
.
is_persistable
(
v
)
]
output
[
"persistable_vars"
]
=
[{
'name'
:
str
(
v
.
name
),
'shape'
:
str
(
v
.
shape
),
'lod_level'
:
int
(
v
.
lod_level
),
'dtype'
:
str
(
v
.
dtype
),
'type'
:
str
(
v
.
type
)
}
for
v
in
persistable_vars
]
with
open
(
os
.
path
.
join
(
output_dir
,
persistable_vars_out_fn
),
'w'
)
as
f
:
f
.
write
(
"persistable vars:
\n
"
)
for
var
in
output
[
"persistable_vars"
]:
f
.
write
(
str
(
var
))
f
.
write
(
"
\n
"
)
# all vars
all_vars
=
[
v
for
v
in
program
.
list_vars
()]
output
[
"all_vars"
]
=
[{
'name'
:
str
(
v
.
name
),
'shape'
:
str
(
v
.
shape
),
'lod_level'
:
int
(
v
.
lod_level
),
'dtype'
:
str
(
v
.
dtype
)
}
if
v
.
type
not
in
feed_fetch_type_list
else
{
'name'
:
str
(
v
.
name
),
'type'
:
str
(
v
.
type
)
}
for
v
in
all_vars
]
with
open
(
os
.
path
.
join
(
output_dir
,
all_vars_out_fn
),
'w'
)
as
f
:
f
.
write
(
"all vars:
\n
"
)
for
var
in
output
[
"all_vars"
]:
f
.
write
(
str
(
var
))
f
.
write
(
"
\n
"
)
# ops
ops
=
program
.
global_block
().
ops
output
[
"ops"
]
=
[{
'type'
:
op
.
type
,
'input_arg_names'
:
str
(
op
.
input_arg_names
),
'output_arg_names'
:
str
(
op
.
output_arg_names
)
}
for
op
in
ops
]
with
open
(
os
.
path
.
join
(
output_dir
,
ops_out_fn
),
'w'
)
as
f
:
f
.
write
(
"ops:
\n
"
)
for
op
in
output
[
"ops"
]:
f
.
write
(
str
(
op
))
f
.
write
(
"
\n
"
)
python/paddle/fluid/tests/unittests/test_fleet_utils.py
浏览文件 @
e59463ef
...
...
@@ -13,14 +13,43 @@
# limitations under the License.
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
import
unittest
import
numpy
as
np
import
tarfile
import
tempfile
import
os
import
sys
from
paddle.dataset.common
import
download
,
DATA_HOME
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
from
paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler
import
fleet
from
paddle.fluid.incubate.fleet.utils.fleet_barrier_util
import
check_all_trainers_ready
from
paddle.fluid.incubate.fleet.utils.fleet_util
import
FleetUtil
import
paddle.fluid.incubate.fleet.utils.utils
as
utils
class
TestFleetUtils
(
unittest
.
TestCase
):
proto_data_url
=
"https://fleet.bj.bcebos.com/fleet_util_data.tgz"
proto_data_md5
=
"59b7f12fd9dc24b64ae8e4629523a92a"
module_name
=
"fleet_util_data"
pruned_dir
=
os
.
path
.
join
(
"fleet_util_data"
,
"pruned_model"
)
train_dir
=
os
.
path
.
join
(
"fleet_util_data"
,
"train_program"
)
def
download_files
(
self
):
path
=
download
(
self
.
proto_data_url
,
self
.
module_name
,
self
.
proto_data_md5
)
print
(
'data is downloaded at '
+
path
)
tar
=
tarfile
.
open
(
path
)
unzip_folder
=
tempfile
.
mkdtemp
()
tar
.
extractall
(
unzip_folder
)
return
unzip_folder
def
test_fleet_util_init
(
self
):
fleet_util_pslib
=
FleetUtil
()
fleet_util_transpiler
=
FleetUtil
(
mode
=
"transpiler"
)
self
.
assertRaises
(
Exception
,
FleetUtil
,
"other"
)
def
test_fleet_barrier
(
self
):
role
=
role_maker
.
UserDefinedRoleMaker
(
current_id
=
0
,
...
...
@@ -30,6 +59,165 @@ class TestFleetUtils(unittest.TestCase):
fleet
.
init
(
role
)
check_all_trainers_ready
(
"/ready_path/"
,
0
)
def
test_program_type_trans
(
self
):
data_dir
=
self
.
download_files
()
program_dir
=
os
.
path
.
join
(
data_dir
,
self
.
pruned_dir
)
text_program
=
"pruned_main_program.pbtxt"
binary_program
=
"pruned_main_program.bin"
fleet_util
=
FleetUtil
()
text_to_binary
=
fleet_util
.
program_type_trans
(
program_dir
,
text_program
,
True
)
binary_to_text
=
fleet_util
.
program_type_trans
(
program_dir
,
binary_program
,
False
)
self
.
assertTrue
(
os
.
path
.
exists
(
os
.
path
.
join
(
program_dir
,
text_to_binary
)))
self
.
assertTrue
(
os
.
path
.
exists
(
os
.
path
.
join
(
program_dir
,
binary_to_text
)))
def
test_parse_program_proto
(
self
):
data_dir
=
self
.
download_files
()
parse_program_file_path
=
os
.
path
.
join
(
data_dir
,
os
.
path
.
join
(
self
.
pruned_dir
,
"pruned_main_program.pbtxt"
))
is_text_parse_program
=
True
parse_output_dir
=
os
.
path
.
join
(
data_dir
,
self
.
pruned_dir
)
fleet_util
=
FleetUtil
()
fleet_util
.
parse_program_proto
(
parse_program_file_path
,
is_text_parse_program
,
parse_output_dir
)
ops_log
=
os
.
path
.
join
(
parse_output_dir
,
"ops.log"
)
vars_log
=
os
.
path
.
join
(
parse_output_dir
,
"vars_all.log"
)
vars_persistable
=
os
.
path
.
join
(
parse_output_dir
,
"vars_persistable.log"
)
self
.
assertTrue
(
os
.
path
.
exists
(
ops_log
))
self
.
assertTrue
(
os
.
path
.
exists
(
vars_log
))
self
.
assertTrue
(
os
.
path
.
exists
(
vars_persistable
))
def
test_check_vars_and_dump
(
self
):
data_dir
=
self
.
download_files
()
class
config
:
pass
feed_config
=
config
()
feed_config
.
feeded_vars_names
=
[
'concat_1.tmp_0'
,
'concat_2.tmp_0'
]
feed_config
.
feeded_vars_dims
=
[
682
,
1199
]
feed_config
.
feeded_vars_types
=
[
np
.
float32
,
np
.
float32
]
feed_config
.
feeded_vars_filelist
=
[
os
.
path
.
join
(
data_dir
,
os
.
path
.
join
(
self
.
pruned_dir
,
"concat_1"
)),
os
.
path
.
join
(
data_dir
,
os
.
path
.
join
(
self
.
pruned_dir
,
"concat_2"
))
]
fetch_config
=
config
()
fetch_config
.
fetch_vars_names
=
[
'similarity_norm.tmp_0'
]
conf
=
config
()
conf
.
batch_size
=
1
conf
.
feed_config
=
feed_config
conf
.
fetch_config
=
fetch_config
conf
.
dump_model_dir
=
os
.
path
.
join
(
data_dir
,
self
.
pruned_dir
)
conf
.
dump_program_filename
=
"pruned_main_program.pbtxt"
conf
.
is_text_dump_program
=
True
conf
.
save_params_filename
=
None
fleet_util
=
FleetUtil
()
# test saved var's shape
conf
.
dump_program_filename
=
"pruned_main_program.save_var_shape_not_match"
self
.
assertRaises
(
Exception
,
fleet_util
.
check_vars_and_dump
,
conf
)
# test program.proto without feed_op and fetch_op
conf
.
dump_program_filename
=
"pruned_main_program.no_feed_fetch"
results
=
fleet_util
.
check_vars_and_dump
(
conf
)
self
.
assertTrue
(
len
(
results
)
==
1
)
np
.
testing
.
assert_array_almost_equal
(
results
[
0
],
np
.
array
(
[[
3.0590223e-07
]],
dtype
=
np
.
float32
))
# test feed_var's shape
conf
.
dump_program_filename
=
"pruned_main_program.feed_var_shape_not_match"
self
.
assertRaises
(
Exception
,
fleet_util
.
check_vars_and_dump
,
conf
)
# test correct case with feed_vars_filelist
conf
.
dump_program_filename
=
"pruned_main_program.pbtxt"
results
=
fleet_util
.
check_vars_and_dump
(
conf
)
self
.
assertTrue
(
len
(
results
)
==
1
)
np
.
testing
.
assert_array_almost_equal
(
results
[
0
],
np
.
array
(
[[
3.0590223e-07
]],
dtype
=
np
.
float32
))
# test correct case without feed_vars_filelist
conf
.
feed_config
.
feeded_vars_filelist
=
None
# test feed var with lod_level >= 2
conf
.
dump_program_filename
=
"pruned_main_program.feed_lod2"
self
.
assertRaises
(
Exception
,
fleet_util
.
check_vars_and_dump
,
conf
)
conf
.
dump_program_filename
=
"pruned_main_program.pbtxt"
results
=
fleet_util
.
check_vars_and_dump
(
conf
)
self
.
assertTrue
(
len
(
results
)
==
1
)
def
test_check_two_programs
(
self
):
data_dir
=
self
.
download_files
()
class
config
:
pass
conf
=
config
()
conf
.
train_prog_path
=
os
.
path
.
join
(
data_dir
,
os
.
path
.
join
(
self
.
train_dir
,
"join_main_program.pbtxt"
))
conf
.
is_text_train_program
=
True
# test not match
conf
.
pruned_prog_path
=
os
.
path
.
join
(
data_dir
,
os
.
path
.
join
(
self
.
pruned_dir
,
"pruned_main_program.save_var_shape_not_match"
))
conf
.
is_text_pruned_program
=
True
conf
.
draw
=
False
fleet_util
=
FleetUtil
()
res
=
fleet_util
.
check_two_programs
(
conf
)
self
.
assertFalse
(
res
)
# test match
conf
.
pruned_prog_path
=
os
.
path
.
join
(
data_dir
,
os
.
path
.
join
(
self
.
pruned_dir
,
"pruned_main_program.pbtxt"
))
if
sys
.
platform
==
'win32'
or
sys
.
platform
==
'sys.platform'
:
conf
.
draw
=
False
else
:
conf
.
draw
=
True
conf
.
draw_out_name
=
"pruned_check"
res
=
fleet_util
.
check_two_programs
(
conf
)
self
.
assertTrue
(
res
)
def
test_draw_program
(
self
):
if
sys
.
platform
==
'win32'
or
sys
.
platform
==
'sys.platform'
:
pass
else
:
data_dir
=
self
.
download_files
()
program_path
=
os
.
path
.
join
(
data_dir
,
os
.
path
.
join
(
self
.
train_dir
,
"join_main_program.pbtxt"
))
is_text
=
True
program
=
utils
.
load_program
(
program_path
,
is_text
)
output_dir
=
os
.
path
.
join
(
data_dir
,
self
.
train_dir
)
output_filename_1
=
"draw_prog_1"
output_filename_2
=
"draw_prog_2"
fleet_util
=
FleetUtil
()
fleet_util
.
draw_from_program_file
(
program_path
,
is_text
,
output_dir
,
output_filename_1
)
fleet_util
.
draw_from_program
(
program
,
output_dir
,
output_filename_2
)
self
.
assertTrue
(
os
.
path
.
exists
(
os
.
path
.
join
(
output_dir
,
output_filename_1
+
".dot"
)))
self
.
assertTrue
(
os
.
path
.
exists
(
os
.
path
.
join
(
output_dir
,
output_filename_1
+
".pdf"
)))
self
.
assertTrue
(
os
.
path
.
exists
(
os
.
path
.
join
(
output_dir
,
output_filename_2
+
".dot"
)))
self
.
assertTrue
(
os
.
path
.
exists
(
os
.
path
.
join
(
output_dir
,
output_filename_2
+
".pdf"
)))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录