pool_op_xpu.cc 7.7 KB
Newer Older
D
Double_V 已提交
1 2 3 4 5 6 7 8 9 10
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
F
From00 已提交
11

D
Double_V 已提交
12
#include <unordered_map>
F
From00 已提交
13 14
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
D
Double_V 已提交
15 16 17 18 19

#ifdef PADDLE_WITH_XPU
namespace paddle {
namespace operators {

F
From00 已提交
20 21
using framework::Tensor;

D
Double_V 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
xpu::Pooling_t XPUPoolingType(const std::string& pooltype, bool exclusive,
                              bool is_test) {
  if (pooltype == "max") {
    return xpu::Pooling_t::MAX_WITHOUT_INDEX;
  } else if (pooltype == "avg") {
    if (exclusive) {
      return xpu::Pooling_t::AVG_WITHOUT_PAD;
    } else {
      return xpu::Pooling_t::AVG_WITH_PAD;
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Pool op only supports 2D and 3D input."));
  }
}
37

D
Double_V 已提交
38 39
template <typename DeviceContext, typename T>
class PoolXPUKernel : public framework::OpKernel<T> {
40 41
  using XPUType = typename XPUTypeTrait<T>::Type;

D
Double_V 已提交
42 43 44 45 46 47 48 49 50 51
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* in_x = context.Input<Tensor>("X");
    Tensor* out = context.Output<Tensor>("Out");
    std::string pooling_type = context.Attr<std::string>("pooling_type");
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    bool exclusive = context.Attr<bool>("exclusive");
    bool adaptive = context.Attr<bool>("adaptive");
52 53 54 55
    PADDLE_ENFORCE_EQ(
        ksize.size(), 2,
        platform::errors::InvalidArgument(
            "The Pool2d XPU OP only support 2 dimension pooling!"));
56 57 58 59
    PADDLE_ENFORCE_EQ(!adaptive || (ksize[0] * ksize[1] == 1), true,
                      platform::errors::InvalidArgument(
                          "The Pool2d XPU OP does not support (adaptive == "
                          "true && output_size != 1)"));
D
Double_V 已提交
60
    int* index_data = nullptr;
61 62 63
    bool global_pooling = context.Attr<bool>("global_pooling") ||
                          (adaptive && (ksize[0] * ksize[1] == 1));
    if (global_pooling) {
D
Double_V 已提交
64 65 66 67 68
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
      }
    }
69 70
    const int n = in_x->dims()[0];
    const int c = in_x->dims()[1];
D
Double_V 已提交
71 72
    const int in_h = in_x->dims()[2];
    const int in_w = in_x->dims()[3];
73
    auto input = reinterpret_cast<const XPUType*>(in_x->data<T>());
D
Double_V 已提交
74
    out->mutable_data<T>(context.GetPlace());
75
    auto output = reinterpret_cast<XPUType*>(out->data<T>());
D
Double_V 已提交
76
    auto& dev_ctx = context.template device_context<DeviceContext>();
77 78
    int r = xpu::Error_t::SUCCESS;
    if (pooling_type == "max") {
79 80 81
      r = xpu::max_pool2d<XPUType>(dev_ctx.x_context(), input, output,
                                   index_data, n, c, in_h, in_w, ksize, strides,
                                   paddings, true);
82
    } else if (pooling_type == "avg") {
83 84 85
      r = xpu::avg_pool2d<XPUType>(dev_ctx.x_context(), input, output, n, c,
                                   in_h, in_w, ksize, strides, paddings,
                                   !exclusive, true);
86 87 88 89 90 91 92 93
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupported pooling type for kunlun ", pooling_type));
    }
    PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
                      platform::errors::External(
                          "The pool2d XPU API return wrong value[%d %s]", r,
                          XPUAPIErrorMsg[r]));
D
Double_V 已提交
94 95
  }
};
96

D
Double_V 已提交
97 98
template <typename DeviceContext, typename T>
class PoolGradXPUKernel : public framework::OpKernel<T> {
99 100
  using XPUType = typename XPUTypeTrait<T>::Type;

D
Double_V 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* in_x = context.Input<Tensor>("X");
    const Tensor* out = context.Input<Tensor>("Out");
    const Tensor* out_grad =
        context.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X"));
    std::string pooling_type = context.Attr<std::string>("pooling_type");
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    bool exclusive = context.Attr<bool>("exclusive");
    bool adaptive = context.Attr<bool>("adaptive");
    const int* index_data = nullptr;
115 116 117 118 119
    PADDLE_ENFORCE_EQ(ksize.size(), 2, platform::errors::InvalidArgument(
                                           "The Pool2d XPU OP only support 2 "
                                           "dimension pooling!, but received "
                                           "%d-dimension pool kernel size",
                                           ksize.size()));
120 121 122 123 124 125 126
    PADDLE_ENFORCE_EQ(!adaptive || (ksize[0] * ksize[1] == 1), true,
                      platform::errors::InvalidArgument(
                          "The Pool2d XPU OP does not support (adaptive == "
                          "true && output_size != 1)"));
    bool global_pooling = context.Attr<bool>("global_pooling") ||
                          (adaptive && (ksize[0] * ksize[1] == 1));
    if (global_pooling) {
D
Double_V 已提交
127 128 129 130 131 132 133 134
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
      }
    }
    if (!in_x_grad) {
      return;
    }
135 136
    const int n = in_x->dims()[0];
    const int c = in_x->dims()[1];
D
Double_V 已提交
137 138
    const int in_h = in_x->dims()[2];
    const int in_w = in_x->dims()[3];
139 140 141
    auto input = reinterpret_cast<const XPUType*>(in_x->data<T>());
    auto output = reinterpret_cast<const XPUType*>(out->data<T>());
    auto output_grad = reinterpret_cast<const XPUType*>(out_grad->data<T>());
D
Double_V 已提交
142
    in_x_grad->mutable_data<T>(context.GetPlace());
143
    auto input_grad = reinterpret_cast<XPUType*>(in_x_grad->data<T>());
D
Double_V 已提交
144
    auto& dev_ctx = context.template device_context<DeviceContext>();
145 146
    int r = xpu::Error_t::SUCCESS;
    if (pooling_type == "max") {
147 148 149
      r = xpu::max_pool2d_grad<XPUType>(
          dev_ctx.x_context(), input, output, index_data, output_grad,
          input_grad, n, c, in_h, in_w, ksize, strides, paddings, true);
150
    } else if (pooling_type == "avg") {
151 152 153
      r = xpu::avg_pool2d_grad<XPUType>(
          dev_ctx.x_context(), input, output, output_grad, input_grad, n, c,
          in_h, in_w, ksize, strides, paddings, !exclusive, true);
154 155 156 157 158 159 160 161
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupported pooling type for kunlun ", pooling_type));
    }
    PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
                      platform::errors::External(
                          "The Pool2dGrad XPU OP return wrong value[%d %s]", r,
                          XPUAPIErrorMsg[r]));
D
Double_V 已提交
162 163 164 165 166 167 168 169
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
170 171 172
    pool2d, ops::PoolXPUKernel<paddle::platform::XPUDeviceContext, float>,
    ops::PoolXPUKernel<paddle::platform::XPUDeviceContext,
                       paddle::platform::float16>);
D
Double_V 已提交
173 174
REGISTER_OP_XPU_KERNEL(
    pool2d_grad,
175 176 177
    ops::PoolGradXPUKernel<paddle::platform::XPUDeviceContext, float>,
    ops::PoolGradXPUKernel<paddle::platform::XPUDeviceContext,
                           paddle::platform::float16>);
D
Double_V 已提交
178 179

#endif