pool_op_xpu.cc 7.2 KB
Newer Older
D
Double_V 已提交
1 2 3 4 5 6 7 8 9 10
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
F
From00 已提交
11

D
Double_V 已提交
12
#include <unordered_map>
F
From00 已提交
13 14
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
D
Double_V 已提交
15 16 17 18 19

#ifdef PADDLE_WITH_XPU
namespace paddle {
namespace operators {

F
From00 已提交
20 21
using framework::Tensor;

D
Double_V 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
xpu::Pooling_t XPUPoolingType(const std::string& pooltype, bool exclusive,
                              bool is_test) {
  if (pooltype == "max") {
    return xpu::Pooling_t::MAX_WITHOUT_INDEX;
  } else if (pooltype == "avg") {
    if (exclusive) {
      return xpu::Pooling_t::AVG_WITHOUT_PAD;
    } else {
      return xpu::Pooling_t::AVG_WITH_PAD;
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Pool op only supports 2D and 3D input."));
  }
}
37

D
Double_V 已提交
38 39 40 41 42 43 44 45 46 47 48 49
template <typename DeviceContext, typename T>
class PoolXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* in_x = context.Input<Tensor>("X");
    Tensor* out = context.Output<Tensor>("Out");
    std::string pooling_type = context.Attr<std::string>("pooling_type");
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    bool exclusive = context.Attr<bool>("exclusive");
    bool adaptive = context.Attr<bool>("adaptive");
50 51 52 53
    PADDLE_ENFORCE_EQ(
        ksize.size(), 2,
        platform::errors::InvalidArgument(
            "The Pool2d XPU OP only support 2 dimension pooling!"));
54 55 56 57
    PADDLE_ENFORCE_EQ(!adaptive || (ksize[0] * ksize[1] == 1), true,
                      platform::errors::InvalidArgument(
                          "The Pool2d XPU OP does not support (adaptive == "
                          "true && output_size != 1)"));
D
Double_V 已提交
58
    int* index_data = nullptr;
59 60 61
    bool global_pooling = context.Attr<bool>("global_pooling") ||
                          (adaptive && (ksize[0] * ksize[1] == 1));
    if (global_pooling) {
D
Double_V 已提交
62 63 64 65 66
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
      }
    }
67 68
    const int n = in_x->dims()[0];
    const int c = in_x->dims()[1];
D
Double_V 已提交
69 70 71 72 73 74
    const int in_h = in_x->dims()[2];
    const int in_w = in_x->dims()[3];
    const float* input = in_x->data<float>();
    out->mutable_data<T>(context.GetPlace());
    float* output = out->data<float>();
    auto& dev_ctx = context.template device_context<DeviceContext>();
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    int r = xpu::Error_t::SUCCESS;
    if (pooling_type == "max") {
      r = xpu::max_pool2d(dev_ctx.x_context(), input, output, index_data, n, c,
                          in_h, in_w, ksize, strides, paddings, true);
    } else if (pooling_type == "avg") {
      r = xpu::avg_pool2d(dev_ctx.x_context(), input, output, n, c, in_h, in_w,
                          ksize, strides, paddings, !exclusive, true);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupported pooling type for kunlun ", pooling_type));
    }
    PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
                      platform::errors::External(
                          "The pool2d XPU API return wrong value[%d %s]", r,
                          XPUAPIErrorMsg[r]));
D
Double_V 已提交
90 91
  }
};
92

D
Double_V 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
template <typename DeviceContext, typename T>
class PoolGradXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* in_x = context.Input<Tensor>("X");
    const Tensor* out = context.Input<Tensor>("Out");
    const Tensor* out_grad =
        context.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X"));
    std::string pooling_type = context.Attr<std::string>("pooling_type");
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    bool exclusive = context.Attr<bool>("exclusive");
    bool adaptive = context.Attr<bool>("adaptive");
    const int* index_data = nullptr;
109 110 111 112 113
    PADDLE_ENFORCE_EQ(ksize.size(), 2, platform::errors::InvalidArgument(
                                           "The Pool2d XPU OP only support 2 "
                                           "dimension pooling!, but received "
                                           "%d-dimension pool kernel size",
                                           ksize.size()));
114 115 116 117 118 119 120
    PADDLE_ENFORCE_EQ(!adaptive || (ksize[0] * ksize[1] == 1), true,
                      platform::errors::InvalidArgument(
                          "The Pool2d XPU OP does not support (adaptive == "
                          "true && output_size != 1)"));
    bool global_pooling = context.Attr<bool>("global_pooling") ||
                          (adaptive && (ksize[0] * ksize[1] == 1));
    if (global_pooling) {
D
Double_V 已提交
121 122 123 124 125 126 127 128
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
      }
    }
    if (!in_x_grad) {
      return;
    }
129 130
    const int n = in_x->dims()[0];
    const int c = in_x->dims()[1];
D
Double_V 已提交
131 132 133 134 135 136 137 138
    const int in_h = in_x->dims()[2];
    const int in_w = in_x->dims()[3];
    const float* input = in_x->data<float>();
    const float* output = out->data<float>();
    const float* output_grad = out_grad->data<float>();
    in_x_grad->mutable_data<T>(context.GetPlace());
    float* input_grad = in_x_grad->data<float>();
    auto& dev_ctx = context.template device_context<DeviceContext>();
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    int r = xpu::Error_t::SUCCESS;
    if (pooling_type == "max") {
      r = xpu::max_pool2d_grad(dev_ctx.x_context(), input, output, index_data,
                               output_grad, input_grad, n, c, in_h, in_w, ksize,
                               strides, paddings, true);
    } else if (pooling_type == "avg") {
      r = xpu::avg_pool2d_grad(dev_ctx.x_context(), input, output, output_grad,
                               input_grad, n, c, in_h, in_w, ksize, strides,
                               paddings, !exclusive, true);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupported pooling type for kunlun ", pooling_type));
    }
    PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
                      platform::errors::External(
                          "The Pool2dGrad XPU OP return wrong value[%d %s]", r,
                          XPUAPIErrorMsg[r]));
D
Double_V 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
    pool2d, ops::PoolXPUKernel<paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(
    pool2d_grad,
    ops::PoolGradXPUKernel<paddle::platform::XPUDeviceContext, float>);

#endif