index_en.rst 1.7 KB
Newer Older
L
Luo Tao 已提交
1 2 3
GET STARTED
============

T
typhoonzero 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
.. _quick_install:

Quick Install
----------------------

You can use pip to install PaddlePaddle using a single command, supports
CentOS 6 above, Ubuntu 14.04 above or MacOS 10.12, with Python 2.7 installed.
Simply run the following command to install:

  .. code-block:: bash

     pip install paddlepaddle

If you need to install GPU version, run:

  .. code-block:: bash

     pip install paddlepaddle-gpu

For more details about installation and build:

L
Luo Tao 已提交
25
..  toctree::
26
  :maxdepth: 1
L
Luo Tao 已提交
27 28

  build_and_install/index_en.rst
29

T
typhoonzero 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

.. _quick_start:

Quick Start
++++++++

Download the `trained housing prices model <https://raw.githubusercontent.com/PaddlePaddle/book/develop/01.fit_a_line/fit_a_line.tar>`_

Now, create a new file called housing.py, and paste this Python
code (make sure to set the right path based on the location of fit_a_line.tar
on your computer):


  .. code-block:: python

     import paddle.v2 as paddle

     # Initialize PaddlePaddle.
     paddle.init(use_gpu=False, trainer_count=1)

     # Configure the neural network.
     x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13))
     y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear())

     with open('fit_a_line.tar', 'r') as f:
         parameters = paddle.parameters.Parameters.from_tar(f)

     # Infer using provided test data.
     probs = paddle.infer(
          output_layer=y_predict, parameters=parameters,
          input=[item for item in paddle.dataset.uci_housing.test()()])

     for i in xrange(len(probs)):
          print 'Predicted price: ${:,.2f}'.format(probs[i][0] * 1000)

Run :code:`python housing.py` and voila! It should print out a list of predictions
for the test housing data.