GET STARTED ============ .. _quick_install: Quick Install ---------------------- You can use pip to install PaddlePaddle using a single command, supports CentOS 6 above, Ubuntu 14.04 above or MacOS 10.12, with Python 2.7 installed. Simply run the following command to install: .. code-block:: bash pip install paddlepaddle If you need to install GPU version, run: .. code-block:: bash pip install paddlepaddle-gpu For more details about installation and build: .. toctree:: :maxdepth: 1 build_and_install/index_en.rst .. _quick_start: Quick Start ++++++++ Download the `trained housing prices model `_ Now, create a new file called housing.py, and paste this Python code (make sure to set the right path based on the location of fit_a_line.tar on your computer): .. code-block:: python import paddle.v2 as paddle # Initialize PaddlePaddle. paddle.init(use_gpu=False, trainer_count=1) # Configure the neural network. x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13)) y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear()) with open('fit_a_line.tar', 'r') as f: parameters = paddle.parameters.Parameters.from_tar(f) # Infer using provided test data. probs = paddle.infer( output_layer=y_predict, parameters=parameters, input=[item for item in paddle.dataset.uci_housing.test()()]) for i in xrange(len(probs)): print 'Predicted price: ${:,.2f}'.format(probs[i][0] * 1000) Run :code:`python housing.py` and voila! It should print out a list of predictions for the test housing data.