matmul_op.cc 35.9 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
M
Markus Kliegl 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <algorithm>
Y
Yu Yang 已提交
16
#include <utility>
17
#include <vector>
Y
Yu Yang 已提交
18
#include "paddle/fluid/framework/op_registry.h"
19
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
20
#include "paddle/fluid/operators/math/blas.h"
21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
M
Markus Kliegl 已提交
24 25 26

namespace paddle {
namespace operators {
27 28 29 30 31 32 33 34 35 36 37

/**
 * Printing shape information into a string is easy to use.
 */
inline static std::string DumpMatrixShape(const math::MatDescriptor &desc) {
  std::stringstream buffer;
  buffer << "[" << desc.batch_size_ << ", " << desc.height_ << ", "
         << desc.width_ << "]";
  return buffer.str();
}

Y
Yu Yang 已提交
38 39 40 41
/**
 * Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
 * original x_dim is returned.
 */
Y
yuyang18 已提交
42
static framework::DDim RowMatrixFromVector(const framework::DDim &x_dim) {
Y
Yu Yang 已提交
43 44 45 46 47 48 49 50 51 52
  if (x_dim.size() > 1) {
    return x_dim;
  }
  return framework::make_ddim({1, x_dim[0]});
}

/**
 * Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
 * original y_dim is returned.
 */
Y
yuyang18 已提交
53
static framework::DDim ColumnMatrixFromVector(const framework::DDim &y_dim) {
Y
Yu Yang 已提交
54 55 56 57 58 59 60 61 62
  if (y_dim.size() > 1) {
    return y_dim;
  }
  return framework::make_ddim({y_dim[0], 1});
}

template <typename DeviceContext, typename T>
class MatMulKernel : public framework::OpKernel<T> {
 public:
Y
yuyang18 已提交
63
  void Compute(const framework::ExecutionContext &context) const override {
64 65 66 67
    auto &x = GET_DATA_SAFELY(context.Input<framework::Tensor>("X"), "Input",
                              "X", "MatMul");
    auto &y = GET_DATA_SAFELY(context.Input<framework::Tensor>("Y"), "Input",
                              "Y", "MatMul");
Y
yuyang18 已提交
68
    auto *out = context.Output<framework::Tensor>("Out");
Y
Yu Yang 已提交
69 70 71 72 73 74 75
    out->mutable_data<T>(context.GetPlace());

    auto blas = math::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = math::CreateMatrixDescriptor(
        RowMatrixFromVector(x.dims()), 0, context.Attr<bool>("transpose_X"));
    auto mat_dim_b = math::CreateMatrixDescriptor(
        ColumnMatrixFromVector(y.dims()), 0, context.Attr<bool>("transpose_Y"));
S
sneaxiy 已提交
76
    auto scale = static_cast<T>(context.Attr<float>("alpha"));
77

78
    int head_number = 1;
79 80
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
81 82 83 84 85 86 87 88 89 90 91 92
    head_number = context.Attr<int>("head_number");
#endif

    const auto &x_dims = x.dims();
    const auto &y_dims = y.dims();
    if (head_number <= 1 && x_dims.size() == 3 && y_dims.size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!context.Attr<bool>("transpose_X")) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
93 94
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
95 96 97
    bool split_vertical_y = (mat_dim_a.width_ != mat_dim_b.height_);

    if (head_number > 1) {
98
      blas.MatMulWithHead(x, mat_dim_a, y, mat_dim_b, scale, head_number, out,
99 100 101
                          T(0), split_vertical_y);
    } else {
      blas.MatMul(x, mat_dim_a, y, mat_dim_b, scale, out, T(0));
102 103
    }
#else
S
sneaxiy 已提交
104
    blas.MatMul(x, mat_dim_a, y, mat_dim_b, scale, out, T(0));
105
#endif
Y
Yu Yang 已提交
106 107 108 109 110
  }
};

// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
Y
yuyang18 已提交
111
static framework::Tensor FoldInitDims(const framework::Tensor &input) {
Y
Yu Yang 已提交
112 113 114 115 116 117 118 119 120 121 122 123
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename DeviceContext, typename T>
Y
yuyang18 已提交
124 125
static framework::Tensor FoldHeadAndLastDims(const DeviceContext &context,
                                             const framework::Tensor &input) {
Y
Yu Yang 已提交
126 127 128 129 130 131 132 133 134 135 136
  auto in_dims = input.dims();
  if (in_dims.size() != 3) {
    return input;
  }
  framework::Tensor output;
  output.Resize({in_dims[1], in_dims[0], in_dims[2]});
  output.mutable_data<T>(context.GetPlace());
  std::vector<int> axis = {1, 0, 2};
  math::Transpose<DeviceContext, T, 3> trans;
  trans(context, input, &output, axis);
  output.Resize({in_dims[1], in_dims[0] * in_dims[2]});
M
Markus Kliegl 已提交
137

Y
Yu Yang 已提交
138 139 140 141 142 143 144 145 146 147
  return output;
}

/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorIntoMatrixSequence(
Y
yuyang18 已提交
148
    framework::Tensor *x, const math::MatDescriptor &descriptor) {
Y
Yu Yang 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
Y
yuyang18 已提交
176 177 178
static void ReshapeXYOutIntoMatrixSequence(framework::Tensor *x,
                                           framework::Tensor *y,
                                           framework::Tensor *out, bool trans_x,
Y
Yu Yang 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
                                           bool trans_y) {
  auto x_dim = RowMatrixFromVector(x->dims());
  auto y_dim = ColumnMatrixFromVector(y->dims());
  auto mat_dim_x = math::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = math::CreateMatrixDescriptor(y_dim, 0, trans_y);
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_, mat_dim_y.width_});
  }

  ReshapeTensorIntoMatrixSequence(x, mat_dim_x);
  ReshapeTensorIntoMatrixSequence(y, mat_dim_y);
}

// Using dimensional constraints on matrix multiplication, it is
// straight-forward to check the following table for when X and Y
// are both matrices.
//
// transpose_X | False    | True     | False    | True
// transpose_Y | False    | False    | True     | True
// -----------+----------+----------+----------+-----------
//        dX = | dOut Y^T | Y dOut^T | dOut Y   | Y^T dOut^T
//        dY = | X^T dOut | X dOut   | dOut^T X | dOut^T X^T
//
// When X is a vector of size K, we treat it instead as a matrix of shape
// (1, K). Similarly, when Y is a vector of size K, we treat it instead as
// a matrix of shape (K, 1).
//
// When X and Y are both 3-dimensional tensors, then the first dimension
// the batch dimension can be ignored and the exact same formulas apply
// as for two matrices.
//
// Finally, when, e.g., X is a 3-dimensional tensor but Y is a matrix, we end
// up with formulas like
//
//   dY_{ij} = \sum_{p, m} X_{pmi} dOut_{pmj}
//
// To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N
// to X: (P * M) x K, dOut: (P * M) x N.
template <typename DeviceContext, typename T>
class MatMulGradKernel : public framework::OpKernel<T> {
 public:
Y
yuyang18 已提交
223 224 225 226
  void MatMul(const framework::ExecutionContext &context,
              const framework::Tensor &a, bool trans_a,
              const framework::Tensor &b, bool trans_b,
              framework::Tensor *out) const {
Y
Yu Yang 已提交
227 228 229 230
    out->mutable_data<T>(context.GetPlace());
    auto blas = math::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = math::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = math::CreateMatrixDescriptor(b.dims(), 0, trans_b);
231 232

    int head_number = 1;
233 234
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
235 236 237
    if (context.HasAttr("head_number")) {
      head_number = context.Attr<int>("head_number");
    }
238 239 240 241 242 243 244 245 246
#endif

    if (head_number <= 1 && a.dims().size() == 3 && b.dims().size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!trans_a) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
S
sneaxiy 已提交
247
    blas.MatMul(a, mat_dim_a, b, mat_dim_b,
S
sneaxiy 已提交
248
                static_cast<T>(context.Attr<float>("alpha")), out, T(0));
Y
Yu Yang 已提交
249 250
  }

Y
yuyang18 已提交
251 252 253
  void CalcInputGrad(const framework::ExecutionContext &context,
                     const framework::Tensor &a, bool trans_a,
                     bool is_fold_init_dims_a, const framework::Tensor &b,
Y
Yu Yang 已提交
254
                     bool trans_b, bool is_fold_init_dims_b,
Y
yuyang18 已提交
255
                     framework::Tensor *out) const {
Y
Yu Yang 已提交
256 257 258 259 260 261
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, out);
    } else {
Y
yuyang18 已提交
262
      auto &ctx = context.template device_context<DeviceContext>();
Y
Yu Yang 已提交
263 264 265 266 267 268 269 270 271 272
      MatMul(context, is_fold_init_dims_a
                          ? FoldInitDims(a)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, a),
             trans_a, is_fold_init_dims_b
                          ? FoldInitDims(b)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, b),
             trans_b, out);
    }
  }

Y
yuyang18 已提交
273
  void Compute(const framework::ExecutionContext &context) const override {
Y
Yu Yang 已提交
274 275 276 277
    auto x = *context.Input<framework::Tensor>("X");
    auto y = *context.Input<framework::Tensor>("Y");
    auto dout =
        *context.Input<framework::Tensor>(framework::GradVarName("Out"));
Y
yuyang18 已提交
278 279
    auto *dx = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto *dy = context.Output<framework::Tensor>(framework::GradVarName("Y"));
Y
Yu Yang 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);
    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    if (transpose_x && transpose_y) {
      CalcInputGrad(context, y, true, true, dout, true, false, dx);
      CalcInputGrad(context, dout, true, true, x, true, false, dy);
    } else if (transpose_x) {
      CalcInputGrad(context, y, false, false, dout, true, false, dx);
      CalcInputGrad(context, x, false, false, dout, false, true, dy);
    } else if (transpose_y) {
      CalcInputGrad(context, dout, false, false, y, false, true, dx);
      CalcInputGrad(context, dout, true, true, x, false, true, dy);
    } else {
      CalcInputGrad(context, dout, false, false, y, true, false, dx);
      CalcInputGrad(context, x, true, true, dout, false, true, dy);
    }

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }
    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }
  }
};
M
Markus Kliegl 已提交
326

327 328 329 330 331 332
framework::DDim GetDimForInput(const framework::InferShapeContext &ctx,
                               std::string input_name) {
  auto shape = ctx.Attrs().Get<std::vector<int>>("fused_reshape_" + input_name);
  auto axis =
      ctx.Attrs().Get<std::vector<int>>("fused_transpose_" + input_name);
  auto dim = ctx.GetInputDim(input_name);
333 334 335 336 337 338

  PADDLE_ENFORCE_GT(dim.size(), 0,
                    platform::errors::InvalidArgument(
                        "The Input(%s) has not been initialized properly. The "
                        "shape of Input(%s) = [%s].",
                        dim));
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
  if (!shape.empty() && !axis.empty()) {
    PADDLE_ENFORCE_GE(
        shape.size(), 2,
        platform::errors::InvalidArgument(
            "shape_%s attribute of MatMulOp was implemented for 2, 3 "
            "or 4 dimensions.",
            input_name));
    PADDLE_ENFORCE_LE(
        shape.size(), 4,
        platform::errors::InvalidArgument(
            "shape_%s attribute of MatMulOp was implemented for 2, 3 "
            "or 4 dimensions.",
            input_name));
    PADDLE_ENFORCE_EQ(
        shape.size(), axis.size(),
        platform::errors::InvalidArgument(
            "Ranks of shape_%s and axis_%s attributes of MatMulOp "
            "must be equal.",
            input_name, input_name));
    dim = dim.reshape(shape).transpose(axis);
  }
  return dim;
}

363 364 365 366 367 368 369 370 371 372 373 374 375
template <typename DeviceContext, typename T>
class MatMulDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void MatMul(const framework::ExecutionContext &context,
              const framework::Tensor &a, bool trans_a,
              const framework::Tensor &b, bool trans_b, bool flag,
              framework::Tensor *out) const {
    out->mutable_data<T>(context.GetPlace());
    auto blas = math::GetBlas<DeviceContext, T>(context);
    auto mat_dim_a = math::CreateMatrixDescriptor(a.dims(), 0, trans_a);
    auto mat_dim_b = math::CreateMatrixDescriptor(b.dims(), 0, trans_b);

    int head_number = 1;
376 377
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
    head_number = context.Attr<int>("head_number");
#endif

    if (head_number <= 1 && a.dims().size() == 3 && b.dims().size() <= 2) {
      // the transpose_X must be false, if is true, the transpose cost much time
      if (!trans_a) {
        mat_dim_a.height_ *= mat_dim_a.batch_size_;
        mat_dim_a.batch_size_ = 0;
      }
    }
    blas.MatMul(a, mat_dim_a, b, mat_dim_b,
                static_cast<T>(context.Attr<float>("alpha")), out,
                static_cast<T>(flag));
  }

  void CalcInputGrad(const framework::ExecutionContext &context,
                     const framework::Tensor &a, bool trans_a,
                     bool is_fold_init_dims_a, const framework::Tensor &b,
                     bool trans_b, bool is_fold_init_dims_b, bool flag,
                     framework::Tensor *out) const {
    if (out == nullptr) return;
    bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) &&
                        out->dims().size() == 2;
    if (!need_combine) {
      MatMul(context, a, trans_a, b, trans_b, flag, out);
    } else {
      auto &ctx = context.template device_context<DeviceContext>();
      MatMul(context, is_fold_init_dims_a
                          ? FoldInitDims(a)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, a),
             trans_a, is_fold_init_dims_b
                          ? FoldInitDims(b)
                          : FoldHeadAndLastDims<DeviceContext, T>(ctx, b),
             trans_b, flag, out);
    }
  }

  void Compute(const framework::ExecutionContext &context) const override {
    auto x = *context.Input<framework::Tensor>("X");
    auto y = *context.Input<framework::Tensor>("Y");
    auto dout = *context.Input<framework::LoDTensor>("DOut");
    auto *ddx = context.Input<framework::LoDTensor>("DDX");
    auto *ddy = context.Input<framework::LoDTensor>("DDY");

    auto *dx = context.Output<framework::LoDTensor>("DX");
    auto *dy = context.Output<framework::LoDTensor>("DY");
    auto *ddout = context.Output<framework::LoDTensor>("DDOut");

    bool transpose_x = context.Attr<bool>("transpose_X");
    bool transpose_y = context.Attr<bool>("transpose_Y");

    ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);

    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    framework::DDim ddout_dims;
    if (ddout) {
      ddout_dims = ddout->dims();
      if (ddout_dims != dout.dims()) {
        ddout->Resize(dout.dims());
      }
    }

    bool ddout_flag = false;
    if (ddx) {
      auto ddx_mat = *ddx;
      if (ddx_mat.dims() != x.dims()) {
        ddx_mat.Resize(x.dims());
      }
      if (dy) {
        if (transpose_x && transpose_y) {
          // dy = dout' * ddx'
          CalcInputGrad(context, dout, true, true, ddx_mat, true, false, false,
                        dy);
        } else if (transpose_x) {
          // dy = ddx * dout
          CalcInputGrad(context, ddx_mat, false, false, dout, false, true,
                        false, dy);
        } else if (transpose_y) {
          // dy = dout' * ddx
          CalcInputGrad(context, dout, true, true, ddx_mat, false, true, false,
                        dy);
        } else {
          // dy = ddx' * dout
          CalcInputGrad(context, ddx_mat, true, true, dout, false, true, false,
                        dy);
        }
      }

      if (ddout) {
        CalcInputGrad(context, ddx_mat, transpose_x, true, y, transpose_y,
                      false, ddout_flag, ddout);
        ddout_flag = true;
      }
    }

    if (ddy) {
      auto ddy_mat = *ddy;
      if (ddy_mat.dims() != y.dims()) {
        ddy_mat.Resize(y.dims());
      }
      if (dx) {
        if (transpose_x && transpose_y) {
          // dx = ddy' * dout'
          CalcInputGrad(context, ddy_mat, true, true, dout, true, false, false,
                        dx);
        } else if (transpose_x) {
          // dx = ddy * dout'
          CalcInputGrad(context, ddy_mat, false, false, dout, true, false,
                        false, dx);
        } else if (transpose_y) {
          // dx = dout * ddy
          CalcInputGrad(context, dout, false, false, ddy_mat, false, true,
                        false, dx);
        } else {
          // dx = dout * ddy'
          CalcInputGrad(context, dout, false, false, ddy_mat, true, false,
                        false, dx);
        }
      }

      if (ddout) {
        CalcInputGrad(context, x, transpose_x, true, ddy_mat, transpose_y,
                      false, ddout_flag, ddout);
      }
    }

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }

    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }

    if (ddout) {
      if (ddout_dims != dout.dims()) {
        ddout->Resize(ddout_dims);
      }
    }
  }
};

M
Markus Kliegl 已提交
539 540 541 542 543
class MatMulOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yuyang18 已提交
544
  void InferShape(framework::InferShapeContext *context) const override {
545 546 547
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasOutput("Out"), "Output", "Out", "matmul");
M
Markus Kliegl 已提交
548

549 550
    auto dim_x = GetDimForInput(*context, "X");
    auto dim_y = GetDimForInput(*context, "Y");
Y
Yu Yang 已提交
551 552
    auto mat_dim_x =
        math::CreateMatrixDescriptor(RowMatrixFromVector(dim_x), 0,
Y
Yu Yang 已提交
553
                                     context->Attrs().Get<bool>("transpose_X"));
Y
Yu Yang 已提交
554 555
    auto mat_dim_y =
        math::CreateMatrixDescriptor(ColumnMatrixFromVector(dim_y), 0,
Y
Yu Yang 已提交
556
                                     context->Attrs().Get<bool>("transpose_Y"));
C
chengduoZH 已提交
557

558 559 560 561 562 563 564
    if (mat_dim_x.width_ == -1) {
      mat_dim_x.width_ = mat_dim_y.height_;
    }
    if (mat_dim_y.height_ == -1) {
      mat_dim_y.height_ = mat_dim_x.width_;
    }

P
phlrain 已提交
565
    if (context->IsRuntime()) {
566
      PADDLE_ENFORCE_EQ(
567 568
          mat_dim_x.batch_size_ == mat_dim_y.batch_size_ ||
              mat_dim_x.batch_size_ == 0 || mat_dim_y.batch_size_ == 0,
569 570 571 572 573 574
          true, platform::errors::InvalidArgument(
                    "The batch size of the two matrices should be equal, or "
                    "at least one is zero.\n"
                    "But received X's shape: %s, Y's shape: %s.",
                    DumpMatrixShape(mat_dim_x).c_str(),
                    DumpMatrixShape(mat_dim_y).c_str()));
P
phlrain 已提交
575
    }
576
    int64_t dim_out_y = mat_dim_y.width_;
577 578
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
579
    int head_number = context->Attrs().Get<int>("head_number");
580
    bool split_vertical_y = (mat_dim_x.width_ != mat_dim_y.height_);
581 582 583
    if (context->IsRuntime()) {
      PADDLE_ENFORCE_LE(
          head_number, mat_dim_x.width_,
584 585 586 587 588
          platform::errors::InvalidArgument(
              "Unsatisfied mkl acceleration library requirements: "
              "The number of heads "
              "(%d) must be equal to X's width. But received X's shape: %s.",
              head_number, DumpMatrixShape(mat_dim_x).c_str()));
589 590 591 592

      if (!split_vertical_y && head_number > 0) {
        dim_out_y = head_number * mat_dim_y.width_;
      }
593
    }
594
#else
595 596 597
    PADDLE_ENFORCE_EQ(mat_dim_x.width_, mat_dim_y.height_,
                      platform::errors::InvalidArgument(
                          "Input X's width should be equal to the Y's height, "
598
                          "but received X's shape: [%s], "
599 600
                          "Y's shape: [%s].",
                          dim_x, dim_y));
601 602
#endif

603
    std::vector<int64_t> dim_out;
Y
Yu Yang 已提交
604 605 606
    if (mat_dim_x.batch_size_ != 0) {
      dim_out = framework::vectorize(dim_x);
      dim_out[dim_out.size() - 2] = mat_dim_x.height_;
607
      dim_out[dim_out.size() - 1] = dim_out_y;
Y
Yu Yang 已提交
608 609 610
    } else if (mat_dim_y.batch_size_ != 0) {
      dim_out = framework::vectorize(dim_y);
      dim_out[dim_out.size() - 2] = mat_dim_x.height_;
611
      dim_out[dim_out.size() - 1] = dim_out_y;
Y
Yu Yang 已提交
612
    } else {
613
      dim_out = {mat_dim_x.height_, dim_out_y};
M
Markus Kliegl 已提交
614 615
    }

Y
Yu Yang 已提交
616 617 618
    if (dim_x.size() == 1 && dim_out[dim_out.size() - 2] == 1) {
      std::swap(dim_out[dim_out.size() - 2], dim_out[dim_out.size() - 1]);
      dim_out.resize(dim_out.size() - 1);
M
Markus Kliegl 已提交
619 620
    }

Y
Yu Yang 已提交
621 622
    if (dim_y.size() == 1 && dim_out[dim_out.size() - 1] == 1) {
      dim_out.resize(dim_out.size() - 1);
M
Markus Kliegl 已提交
623 624
    }

Y
Yu Yang 已提交
625 626
    if (dim_out.empty()) {
      dim_out = {1};
M
Markus Kliegl 已提交
627
    }
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666

    framework::DDim ddim_out = framework::make_ddim(dim_out);

#ifdef PADDLE_WITH_MKLDNN
    //  if mkldnn matmul+transpose+reshape fuse activated
    auto reshape_out =
        context->Attrs().Get<std::vector<int>>("fused_reshape_Out");
    auto transpose_out =
        context->Attrs().Get<std::vector<int>>("fused_transpose_Out");

    if (!reshape_out.empty() && !transpose_out.empty()) {
      auto reshape_out_size = reshape_out.size();
      auto transpose_out_size = transpose_out.size();
      PADDLE_ENFORCE_EQ(transpose_out_size, 4,
                        platform::errors::InvalidArgument(
                            "transpose_out supported rank is 4, "
                            "received %d",
                            transpose_out_size));
      const std::vector<int> supported_axis{0, 2, 1, 3};
      const bool supported_transpose_axis = std::equal(
          transpose_out.begin(), transpose_out.end(), supported_axis.begin());
      PADDLE_ENFORCE_EQ(
          supported_transpose_axis, true,
          platform::errors::InvalidArgument(
              "supported transpose axis for the fuse are {0, 2, 1, 3}"));
      PADDLE_ENFORCE_EQ(
          reshape_out_size, 3,
          platform::errors::InvalidArgument("reshape_out supported rank is 3, "
                                            "received %d",
                                            reshape_out_size));
      framework::DDim shape_out =
          ddim_out.transpose(transpose_out).reshape(reshape_out);
      context->SetOutputDim("Out", shape_out);
    } else {
      context->SetOutputDim("Out", ddim_out);
    }
#else
    context->SetOutputDim("Out", ddim_out);
#endif
M
Markus Kliegl 已提交
667 668
    context->ShareLoD("X", /*->*/ "Out");
  }
669 670 671

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
672 673
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
674 675 676

#ifdef PADDLE_WITH_MKLDNN
    using mkldnn::memory;
677
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
678 679 680 681 682 683 684
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
685 686 687 688 689 690 691 692 693 694 695 696 697

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
M
Markus Kliegl 已提交
698 699 700 701
};

class MatMulOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
702
  void Make() override {
M
Markus Kliegl 已提交
703 704 705 706 707 708 709 710 711 712 713
    AddInput("X", "The first input of MatMul op");
    AddInput("Y", "The second input of MatMul op");
    AddOutput("Out", "The output of MatMul op");
    AddAttr<bool>("transpose_X",
                  R"DOC(If true, use the transpose of `X`.
        )DOC")
        .SetDefault(false);
    AddAttr<bool>("transpose_Y",
                  R"DOC(If true, use the transpose of `Y`.
        )DOC")
        .SetDefault(false);
S
sneaxiy 已提交
714
    AddAttr<float>("alpha", "The scale of Out").SetDefault(1.0f);
715 716 717
    AddAttr<bool>(
        "use_mkldnn",
        "(bool, default false) Indicates if MKL-DNN kernel will be used")
718 719
        .SetDefault(false)
        .AsExtra();
720 721
    AddAttr<std::vector<int>>("fused_reshape_X",
                              R"DOC(Shape of fused reshape of `X` input.)DOC")
722 723
        .SetDefault({})
        .AsExtra();
724 725
    AddAttr<std::vector<int>>("fused_reshape_Y",
                              R"DOC(Shape of fused reshape of `Y` input.)DOC")
726 727
        .SetDefault({})
        .AsExtra();
728 729
    AddAttr<std::vector<int>>("fused_transpose_X",
                              R"DOC(Axis of fused transpose of `X` input.)DOC")
730 731
        .SetDefault({})
        .AsExtra();
732 733
    AddAttr<std::vector<int>>("fused_transpose_Y",
                              R"DOC(Axis of fused transpose of `Y` input.)DOC")
734 735
        .SetDefault({})
        .AsExtra();
736 737 738 739
    AddAttr<std::vector<int>>(
        "fused_reshape_Out",
        R"DOC(When MKLDNN MatMul_transpose_reshape fuse activated, "
              "it's a shape atribute of fused reshape for `Out` output.)DOC")
740 741
        .SetDefault({})
        .AsExtra();
742 743 744 745
    AddAttr<std::vector<int>>(
        "fused_transpose_Out",
        R"DOC(When MKLDNN MatMul_transpose_reshape fuse activated, "
              "it's a axis atribute of fused transpose for `Out` output.)DOC")
746 747
        .SetDefault({})
        .AsExtra();
748 749 750 751
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
752 753
        .SetDefault(false)
        .AsExtra();
754 755 756 757
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
758 759
        .InEnum({"float32", "int8", "bfloat16"})
        .AsExtra();
760
    /* int8 parameters */
761 762
    AddAttr<float>("Scale_x",
                   "(float, default 1.0f), The quantize scale of X tensor")
763 764
        .SetDefault(1.0f)
        .AsExtra();
765 766
    AddAttr<float>("Scale_y",
                   "(float, default 1.0f), The quantize scale of Y tensor")
767 768
        .SetDefault(1.0f)
        .AsExtra();
769 770
    AddAttr<float>("Scale_out",
                   "(float, default 1.0f), The quantize scale of output data")
771 772
        .SetDefault(1.0f)
        .AsExtra();
773 774 775
    AddAttr<bool>("force_fp32_output",
                  "(bool, default false) Force INT8 kernel output FP32, only "
                  "used in MKL-DNN INT8")
776 777
        .SetDefault(false)
        .AsExtra();
778

779 780
#if defined(PADDLE_WITH_MKLML) && !defined(PADDLE_WITH_CUDA) && \
    !defined(PADDLE_WITH_HIP)
781 782 783
    AddAttr<int>("head_number", "The number of heads of the matrix")
        .SetDefault(1);
#endif
M
Markus Kliegl 已提交
784
    AddComment(R"DOC(
K
kexinzhao 已提交
785 786 787 788
MatMul Operator.


This operator is used to perform (batched) matrix multiplication
M
Markus Kliegl 已提交
789 790 791 792 793 794 795 796 797 798 799 800 801 802
over the last two dimensions of the input tensors `X` and `Y`.

If a transpose flag is specified, the last two dimensions of the
tensor are transposed. If the tensor is rank-1 of shape [D], then
for `X` it is treated as [1, D] in nontransposed form and as [D, 1]
in transposed form, whereas for `Y` it is the opposite: It is treated
as [D, 1] in nontransposed form and as [1, D] in transposed form.

Examples without transpose:
- X: [K], Y: [K] => Out: [1]
- X: [K], Y: [K, N] => Out: [N]
- X: [B, M, K], Y: [K] => Out: [B, M]
- X: [M, K], Y: [B, K, N] => Out: [B, M, N]
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, N]
C
chengduoZH 已提交
803
- X: [B, ..., M, K], Y: [B, ..., K, N] => Out: [B, ..., M, N]
M
Markus Kliegl 已提交
804

805 806 807
Example of matrix multiplication with head_number of H
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, H * N]

M
Markus Kliegl 已提交
808 809
The behavior is designed to be similar to the `numpy.matmul` function.
The differences are:
C
chengduoZH 已提交
810 811
- When the rank of the input data is less than or equal to 3, it
  is similar to the `numpy.matmul` function.
C
chengduoZH 已提交
812
- When the rank of the input is greater than 3, the rank of X and
C
chengduoZH 已提交
813
  Y must be equal, and the first `rank - 2` dimensions must be equal.
M
Markus Kliegl 已提交
814
- We add `transpose_X` and `transpose_Y` flags.
815 816 817
- We add `head_number` attribute, which is used to multiple two matrixes head
  by head, and eventually concatenates the output of several (head_number)
  small matrixes multiplication.
M
Markus Kliegl 已提交
818 819

Both the input `X` and `Y` can carry the LoD (Level of Details) information,
K
kexinzhao 已提交
820 821
or not. But the output only shares the LoD information with input `X`.

M
Markus Kliegl 已提交
822 823 824 825 826 827 828 829 830
)DOC");
  }
};

class MatMulOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yuyang18 已提交
831
  void InferShape(framework::InferShapeContext *context) const override {
832 833 834 835
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "matmul");
M
Markus Kliegl 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848
    auto x_dims = context->GetInputDim("X");
    auto y_dims = context->GetInputDim("Y");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (context->HasOutput(x_grad_name)) {
      context->SetOutputDim(x_grad_name, x_dims);
    }
    if (context->HasOutput(y_grad_name)) {
      context->SetOutputDim(y_grad_name, y_dims);
    }
  }
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
M
Markus Kliegl 已提交
864 865
};

H
hong 已提交
866 867
template <typename T>
class MatMulOpGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
868
 public:
H
hong 已提交
869
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
870 871

 protected:
872
  void Apply(GradOpPtr<T> retv) const override {
Y
Yu Yang 已提交
873
    retv->SetType("matmul_grad");
H
hong 已提交
874 875 876 877 878 879
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    retv->SetAttrMap(this->Attrs());
Y
Yu Yang 已提交
880 881
  }
};
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936

class MatMulOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext *context) const override {
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasInput("DOut"), "Input", "DOut", "matmul");

    if (context->HasOutput("DX") && context->HasInput("DDY")) {
      context->ShareDim("X", "DX");
    }

    if (context->HasOutput("DY") && context->HasInput("DDX")) {
      context->ShareDim("Y", "DY");
    }

    if (context->HasOutput("DDOut") &&
        (context->HasInput("DDY") || context->HasInput("DDX"))) {
      context->ShareDim("DOut", "DDOut");
    }
  }
};

template <typename T>
class MatMulOpDoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> retv) const override {
    retv->SetType("matmul_grad_grad");
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    retv->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    retv->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));

    auto ddx = this->OutputGrad(framework::GradVarName("X"));
    auto ddy = this->OutputGrad(framework::GradVarName("Y"));

    if (!ddx.empty() || !ddy.empty()) {
      retv->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    }
    retv->SetOutput(
        "DX", ddy.empty() ? this->EmptyInputGrad() : this->InputGrad("X"));
    retv->SetOutput(
        "DY", ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Y"));

    retv->SetAttrMap(this->Attrs());
  }
};

M
Markus Kliegl 已提交
937 938 939 940
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
941
REGISTER_OPERATOR(matmul, ops::MatMulOp, ops::MatMulOpMaker,
H
hong 已提交
942 943
                  ops::MatMulOpGradMaker<paddle::framework::OpDesc>,
                  ops::MatMulOpGradMaker<paddle::imperative::OpBase>);
944 945 946 947
REGISTER_OPERATOR(matmul_grad, ops::MatMulOpGrad,
                  ops::MatMulOpDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::MatMulOpDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(matmul_grad_grad, ops::MatMulOpDoubleGrad);
M
Markus Kliegl 已提交
948
REGISTER_OP_CPU_KERNEL(
Y
yuyang18 已提交
949
    matmul, ops::MatMulKernel<paddle::platform::CPUDeviceContext, float>,
950
    ops::MatMulKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
951 952
REGISTER_OP_CPU_KERNEL(
    matmul_grad,
Y
yuyang18 已提交
953
    ops::MatMulGradKernel<paddle::platform::CPUDeviceContext, float>,
954
    ops::MatMulGradKernel<paddle::platform::CPUDeviceContext, double>);
Y
Yu Yang 已提交
955

956 957 958 959 960
REGISTER_OP_CPU_KERNEL(
    matmul_grad_grad,
    ops::MatMulDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MatMulDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);

961
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yu Yang 已提交
962
REGISTER_OP_CUDA_KERNEL(
Y
yuyang18 已提交
963 964 965 966
    matmul, ops::MatMulKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MatMulKernel<paddle::platform::CUDADeviceContext, double>,
    ops::MatMulKernel<paddle::platform::CUDADeviceContext,
                      paddle::platform::float16>);
Y
Yu Yang 已提交
967 968
REGISTER_OP_CUDA_KERNEL(
    matmul_grad,
Y
yuyang18 已提交
969 970 971 972
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::MatMulGradKernel<paddle::platform::CUDADeviceContext,
                          paddle::platform::float16>);
973 974 975 976
REGISTER_OP_CUDA_KERNEL(
    matmul_grad_grad,
    ops::MatMulDoubleGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MatMulDoubleGradKernel<paddle::platform::CUDADeviceContext, double>);
Y
Yu Yang 已提交
977
#endif
978 979 980 981 982 983 984 985 986 987 988

REGISTER_OP_VERSION(matmul)
    .AddCheckpoint(
        R"ROC(Register matmul for adding the attribute of
       fused_reshape_Y)ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "fused_reshape_Y",
            "In order to support the function of fused the input Y "
            " and input X into the input X when "
            "using the operator of matmul, and get raw shape of input Y.",
            std::vector<int>{}));