maxout_op.cc 4.0 KB
Newer Older
W
wanghaox 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *     Unless required by applicable law or agreed to in writing, software
 *     distributed under the License is distributed on an "AS IS" BASIS,
 *     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *     See the License for the specific language governing permissions and
 *     limitations under the License. */

#include "paddle/operators/maxout_op.h"
namespace paddle {
namespace operators {

using framework::Tensor;

class MaxOutOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  MaxOutOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X",
W
wanghaox 已提交
26
        "(Tensor) The input tensor of maxout operator. "
W
wanghaox 已提交
27 28 29
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
    AddOutput("Out",
W
wanghaox 已提交
30
        "(Tensor) The output tensor of maxout operator."
W
wanghaox 已提交
31 32 33 34 35 36
        "The format of output tensor is also NCHW."
        "Where N is batch size, C is "
        "the number of channels, H and W is the height and "
        "width of feature.");
    AddAttr<int>(
        "groups",
W
wanghaox 已提交
37 38 39
        R"DOC("Specifies how many groups the input tensor will be split"
        "in the channel dimension. And the number of output channel is "
        "the number of channels divided by groups.."
W
wanghaox 已提交
40 41
        )DOC");
    AddComment(R"DOC(
W
wanghaox 已提交
42 43
        Assumed the input shape is (N, Ci, H, W).
        The output shape is (N, Co, H, W). Then `Co = Ci / groups`.
W
wanghaox 已提交
44

W
wanghaox 已提交
45
       math:
W
wanghaox 已提交
46 47 48 49 50 51 52 53 54 55 56 57
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

    Please refer to Paper:
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
W
wanghaox 已提交
58 59 60 61 62 63 64 65 66
        )DOC");
  }
};


class MaxOutOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
W
wanghaox 已提交
67
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of MaxoutOp"
W
wanghaox 已提交
68 69
                   "should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
W
wanghaox 已提交
70
                   "Output(Out) of MaxoutOp should not be null.");
W
wanghaox 已提交
71 72 73 74 75
    auto in_x_dims = ctx->GetInputDim("X");
    int groups = ctx->Attrs().Get<int>("groups");
    // check groups > 1
    PADDLE_ENFORCE_GT(
        groups, 1,
W
wanghaox 已提交
76
        "groups should be larger than 1 in maxoutop");
W
wanghaox 已提交
77
    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1] / groups});
W
wanghaox 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    output_shape.push_back(in_x_dims[2]);
    output_shape.push_back(in_x_dims[3]);
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
  }
};

class MaxOutOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
    "Input(X@GRAD) should not be null.");
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
};
}    // namespace operators
}    // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(maxout, ops::MaxOutOp, ops::MaxOutOpMaker, maxout_grad,
                        ops::MaxOutOpGrad);
REGISTER_OP_CPU_KERNEL(maxout, ops::MaxOutKernel<paddle::platform::CPUPlace,
                       float>);
REGISTER_OP_CPU_KERNEL(maxout_grad,
                       ops::MaxOutGradKernel<paddle::platform::CPUPlace,
                       float>);