maxout_op.cc 4.7 KB
Newer Older
W
wanghaox 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *     Unless required by applicable law or agreed to in writing, software
 *     distributed under the License is distributed on an "AS IS" BASIS,
 *     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *     See the License for the specific language governing permissions and
 *     limitations under the License. */


#include "paddle/operators/maxout_op.h"
namespace paddle {
namespace operators {

using framework::Tensor;

class MaxOutOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  MaxOutOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X",
W
wanghaox 已提交
27
        "(Tensor) The input tensor of maxout operator. "
W
wanghaox 已提交
28 29 30
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
    AddOutput("Out",
W
wanghaox 已提交
31
        "(Tensor) The output tensor of maxout operator."
W
wanghaox 已提交
32 33 34 35 36 37 38 39
        "The format of output tensor is also NCHW."
        "Where N is batch size, C is "
        "the number of channels, H and W is the height and "
        "width of feature.");

    AddAttr<int>(
        "groups",
        R"DOC(The group number of input layer.
W
wanghaox 已提交
40 41 42
        )DOC");
    AddComment(R"DOC(
        - Input: NCHW.
W
wanghaox 已提交
43 44 45
        - Output: feature map size same as input. Channel is (input channel) / groups.
        So groups should be larger than 1, and the num of channels should be able
        to devided by groups.
W
wanghaox 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

    Please refer to Paper:
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf

    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

    :param input: The input of this layer.
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
    :type num_channels: int | None
    :param groups: The group number of input layer.
    :type groups: int
    :param name: The name of this layer. It is optional.
    :type name: None | basestring.
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput

W
wanghaox 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
        )DOC");
  }
};


class MaxOutOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of maxoutOp"
                   "should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of maxoutOp should not be null.");
    auto in_x_dims = ctx->GetInputDim("X");
    int groups = ctx->Attrs().Get<int>("groups");

    // check groups > 1
    PADDLE_ENFORCE_GT(
        groups, 1,
        "in maxoutop  groups should be larger than 1");


W
wanghaox 已提交
106
    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1] / groups});
W
wanghaox 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    output_shape.push_back(in_x_dims[2]);
    output_shape.push_back(in_x_dims[3]);

    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
  }
};


class MaxOutOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
    "Input(X@GRAD) should not be null.");
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
};
}    // namespace operators
}    // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(maxout, ops::MaxOutOp, ops::MaxOutOpMaker, maxout_grad,
                        ops::MaxOutOpGrad);


REGISTER_OP_CPU_KERNEL(maxout, ops::MaxOutKernel<paddle::platform::CPUPlace,
                       float>);
REGISTER_OP_CPU_KERNEL(maxout_grad,
                       ops::MaxOutGradKernel<paddle::platform::CPUPlace,
                       float>);