conv_transpose_op.h 12.2 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
C
chengduoZH 已提交
19
#include "paddle/operators/math/im2col.h"
C
chengduoZH 已提交
20 21 22 23 24 25 26 27 28 29 30
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/vol2col.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using DDim = framework::DDim;

// Define Op classes in .h file so that other conv transpose
// operator implementations can reuse the code.
C
chengduoZH 已提交
31 32 33 34 35 36
class Conv2DTransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  Conv2DTransposeOpMaker(framework::OpProto* proto,
                         framework::OpAttrChecker* op_checker);
};

C
chengduoZH 已提交
37 38 39 40 41 42
class Conv3DTransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  Conv3DTransposeOpMaker(framework::OpProto* proto,
                         framework::OpAttrChecker* op_checker);
};

C
chengduoZH 已提交
43
class ConvTransposeOp : public framework::OperatorWithKernel {
C
chengduoZH 已提交
44 45 46 47 48
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
};

C
chengduoZH 已提交
49
class ConvTransposeOpGrad : public framework::OperatorWithKernel {
C
chengduoZH 已提交
50 51 52 53 54 55
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
};

template <typename Place, typename T>
56
class GemmConvTransposeKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
57 58 59 60 61 62 63 64
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    // The filter will be reshaped, so it should not be constant pointer
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* output = context.Output<Tensor>("Output");

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
C
chengduoZH 已提交
65
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
66 67 68
    // TODO(Zhuoyuan): Paddings can be added in future.
    // groups will alway be disabled in conv2dtranspose.

C
chengduoZH 已提交
69
    const int batch_size = static_cast<int>(input->dims()[0]);
C
chengduoZH 已提交
70

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    // input_shape_vec: {h, w} or {d, h, w}
    std::vector<int64_t> input_shape_vec = framework::vectorize(input->dims());
    input_shape_vec.erase(input_shape_vec.begin(), input_shape_vec.begin() + 2);

    // filter_shape_vec: {k_h, k_w} or {k_d, k_h, k_w}
    std::vector<int64_t> filter_shape_vec = framework::vectorize(filter.dims());
    filter_shape_vec.erase(filter_shape_vec.begin(),
                           filter_shape_vec.begin() + 2);

    // use col_shape in the im2col and col2im (or vol2col and col2vol)
    // calculation
    // col_shape_vec: {c, k_h, k_w, h, w} or {c, k_d, k_h, k_w, d, h, w}
    std::vector<int64_t> col_shape_vec;
    col_shape_vec.push_back(output->dims()[1]);
    col_shape_vec.insert(col_shape_vec.end(), filter_shape_vec.begin(),
                         filter_shape_vec.end());
    col_shape_vec.insert(col_shape_vec.end(), input_shape_vec.begin(),
                         input_shape_vec.end());
    DDim col_shape(framework::make_ddim(col_shape_vec));
C
chengduoZH 已提交
90 91

    // use col_matrix_shape in the gemm calculation
92 93 94
    // size: (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
    DDim col_matrix_shape =
        framework::flatten_to_2d(col_shape, filter_shape_vec.size() + 1);
C
chengduoZH 已提交
95 96 97 98 99 100 101 102 103 104

    Tensor col;
    col.mutable_data<T>(col_shape, context.GetPlace());
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
    Tensor col_matrix;
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);

105 106 107
    // output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
    DDim output_shape =
        framework::slice_ddim(output->dims(), 1, output->dims().size());
C
chengduoZH 已提交
108

109 110 111 112 113
    // input matrix size: (m, h * w) or (m, d * h * w)
    DDim input_matrix_shape = {input->dims()[1], col_matrix_shape[1]};

    // filter size: (m, c * k_h * k_w) or (m, c * k_d * k_h * k_w)
    DDim filter_matrix_shape = {input->dims()[1], col_matrix_shape[0]};
C
chengduoZH 已提交
114 115 116
    filter.Resize(filter_matrix_shape);

    output->mutable_data<T>(context.GetPlace());
C
chengduoZH 已提交
117 118
    math::SetConstant<Place, T> set_zero;
    set_zero(context.device_context(), output, static_cast<T>(0));
C
chengduoZH 已提交
119

C
chengduoZH 已提交
120 121 122 123
    math::Col2ImFunctor<math::ColFormat::kCFO, Place, T> col2im;
    math::Col2VolFunctor<Place, T> col2vol;
    std::vector<int> dilations({1, 1, 1});

124 125
    // convolution transpose: gemm + col2im or col2vol (similar to conv-backward
    // on input)
C
chengduoZH 已提交
126
    for (int i = 0; i < batch_size; i++) {
127
      // batch with size (m, h * w) or (m, d * h * w)
C
chengduoZH 已提交
128 129
      Tensor input_batch = input->Slice(i, i + 1).Resize(input_matrix_shape);

130
      // output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
C
chengduoZH 已提交
131 132 133
      Tensor output_batch = output->Slice(i, i + 1).Resize(output_shape);

      // col_matrix = filter * input_batch
134
      // of shape (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
C
chengduoZH 已提交
135
      math::matmul<Place, T>(context.device_context(), filter, true,
C
chengduoZH 已提交
136 137 138
                             input_batch, false, static_cast<T>(1.0),
                             &col_matrix, static_cast<T>(0.0));

139 140 141
      if (filter_shape_vec.size() == 2) {
        // col2im: col_matrix -> dy
        // from (c * k_h * k_w, h * w) to (c, o_h, o_w)
C
chengduoZH 已提交
142 143 144 145 146
        col2im(context.device_context(), col,
               std::vector<int>{dilations[0], dilations[1]}, strides,
               std::vector<int>{paddings[0], paddings[1], paddings[0],
                                paddings[1]},
               &output_batch);
147 148 149
      } else if (filter_shape_vec.size() == 3) {
        // col2vol: col_matrix -> dy
        // from (c * k_d * k_h * k_w, d * h * w) to (c, o_d, o_h, o_w)
C
chengduoZH 已提交
150 151
        col2vol(context.device_context(), col, dilations, strides, paddings,
                &output_batch);
152
      }
C
chengduoZH 已提交
153 154 155 156 157
    }
  }
};

template <typename Place, typename T>
158
class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    // For filter, we do not use const pointer b/c we will do reshape,
    // but we should avoid modifying its value.
    Tensor filter = *context.Input<Tensor>("Filter");
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad =
        context.Output<Tensor>(framework::GradVarName("Filter"));

172 173
    if ((!input_grad) && (!filter_grad)) return;

C
chengduoZH 已提交
174 175 176
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");

C
chengduoZH 已提交
177
    const int batch_size = static_cast<int>(input->dims()[0]);
C
chengduoZH 已提交
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    // input_shape_vec: {h, w} or {d, h, w}
    std::vector<int64_t> input_shape_vec = framework::vectorize(input->dims());
    input_shape_vec.erase(input_shape_vec.begin(), input_shape_vec.begin() + 2);

    // filter_shape_vec: {k_h, k_w} or {k_d, k_h, k_w}
    std::vector<int64_t> filter_shape_vec = framework::vectorize(filter.dims());
    filter_shape_vec.erase(filter_shape_vec.begin(),
                           filter_shape_vec.begin() + 2);

    // use col_shape in the im2col and col2im (or vol2col and col2vol)
    // calculation
    // col_shape_vec: {c, k_h, k_w, h, w} or {c, k_d, k_h, k_w, d, h, w}
    std::vector<int64_t> col_shape_vec;
    col_shape_vec.push_back(output_grad->dims()[1]);
    col_shape_vec.insert(col_shape_vec.end(), filter_shape_vec.begin(),
                         filter_shape_vec.end());
    col_shape_vec.insert(col_shape_vec.end(), input_shape_vec.begin(),
                         input_shape_vec.end());
    DDim col_shape(framework::make_ddim(col_shape_vec));
C
chengduoZH 已提交
198

199 200 201 202
    // use col_matrix_shape in the gemm calculation
    // size: (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
    DDim col_matrix_shape =
        framework::flatten_to_2d(col_shape, filter_shape_vec.size() + 1);
C
chengduoZH 已提交
203

204 205 206
    // output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
    DDim output_shape = framework::slice_ddim(output_grad->dims(), 1,
                                              output_grad->dims().size());
C
chengduoZH 已提交
207

208 209
    // input matrix size: (m, h * w) or (m, d * h * w)
    DDim input_matrix_shape = {input->dims()[1], col_matrix_shape[1]};
C
chengduoZH 已提交
210

211 212
    // filter size: (m, c * k_h * k_w) or (m, c * k_d * k_h * k_w)
    DDim filter_matrix_shape = {input->dims()[1], col_matrix_shape[0]};
C
chengduoZH 已提交
213 214 215 216 217
    filter.Resize(filter_matrix_shape);

    // convolution transpose grad on input:
    // im2col + gemm (similar to conv-forward)
    // input need to compute gradient
C
chengduoZH 已提交
218 219 220 221 222 223
    if (input_grad || filter_grad) {
      Tensor col;
      col.mutable_data<T>(col_shape, context.GetPlace());
      // col_matrix shares the same piece of data with col,
      // but will be reshaped into a two-dimensional matrix shape
      // to call the matrix multiplication interface.
C
chengduoZH 已提交
224 225 226 227
      Tensor col_matrix;
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);

C
chengduoZH 已提交
228 229
      Tensor filter_grad_;
      math::SetConstant<Place, T> set_zero;
C
chengduoZH 已提交
230

C
chengduoZH 已提交
231 232 233 234
      math::Im2ColFunctor<math::ColFormat::kCFO, Place, T> im2col;
      math::Vol2ColFunctor<Place, T> vol2col;
      std::vector<int> dilations({1, 1, 1});

C
chengduoZH 已提交
235 236 237 238 239 240 241 242 243
      if (input_grad) {
        input_grad->mutable_data<T>(context.GetPlace());
        set_zero(context.device_context(), input_grad, static_cast<T>(0));
      }
      if (filter_grad) {  // filter size (m, c, k_h, k_w)
        filter_grad->mutable_data<T>(context.GetPlace());
        set_zero(context.device_context(), filter_grad, static_cast<T>(0));
        filter_grad_ = *filter_grad;
        filter_grad_.Resize(filter_matrix_shape);
C
chengduoZH 已提交
244 245
      }

C
chengduoZH 已提交
246 247
      for (int i = 0; i < batch_size; i++) {
        // batch with size (c, o_h * o_w)
C
chengduoZH 已提交
248 249 250
        Tensor output_grad_batch =
            output_grad->Slice(i, i + 1).Resize(output_shape);

251 252 253
        if (filter_shape_vec.size() == 2) {
          // im2col: dy -> col matrix
          // from (c, o_h, o_w) to (c * k_h * k_w, h * w)
C
chengduoZH 已提交
254 255 256 257 258
          im2col(context.device_context(), output_grad_batch,
                 std::vector<int>{dilations[0], dilations[1]}, strides,
                 std::vector<int>{paddings[0], paddings[1], paddings[0],
                                  paddings[1]},
                 &col);
259 260 261
        } else if (filter_shape_vec.size() == 3) {
          // vol2col: dy -> col_matrix
          // from (c, o_d, o_h, o_w) to (c * k_d * k_h * k_w, d * h * w)
C
chengduoZH 已提交
262 263
          vol2col(context.device_context(), output_grad_batch, dilations,
                  strides, paddings, &col);
264
        }
C
chengduoZH 已提交
265

C
chengduoZH 已提交
266 267 268 269 270 271
        if (input_grad) {
          // batch with size (m, h, w)
          Tensor input_grad_batch =
              input_grad->Slice(i, i + 1).Resize(input_matrix_shape);
          // gemm: dx = filter * dy
          // (m, c * k_h * k_w) * (c * k_h * k_w, h * w) -> (m, h * w)
272
          // or
C
chengduoZH 已提交
273 274 275 276 277 278 279 280 281 282
          // (m, c * k_d * k_h * k_w) * (c * k_d * k_h * k_w, d * h * w) -> (m,
          // d, h, w)
          math::matmul<Place, T>(context.device_context(), filter, false,
                                 col_matrix, false, static_cast<T>(1.0),
                                 &input_grad_batch, static_cast<T>(0.0));
        }
        if (filter_grad) {
          // input batch
          Tensor in_batch = input->Slice(i, i + 1).Resize(input_matrix_shape);
          // gemm: d_filter = x * dy^T
283 284
          // (m, c * h * w) * (k_h * k_w, c * h * w) -> (m, k_h * k_w)
          // or
C
chengduoZH 已提交
285 286 287 288 289 290
          // (m, d * h * w) * (d * h * w, c * k_d * k_h * k_w) -> (m, c * k_d *
          // k_h * k_w)
          math::matmul<Place, T>(context.device_context(), in_batch, false,
                                 col_matrix, true, static_cast<T>(1.0),
                                 &filter_grad_, static_cast<T>(1.0));
        }
C
chengduoZH 已提交
291 292 293 294 295 296
      }
    }
  }
};
}  // namespace operators
}  // namespace paddle