prepared_operator.cc 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/eager/legacy/prepared_operator.h"

#include "paddle/fluid/eager/legacy/infer_shape_context.h"
#include "paddle/fluid/framework/data_type_transform.h"
#include "paddle/fluid/framework/details/nan_inf_utils.h"
#include "paddle/fluid/framework/pten_utils.h"
#include "paddle/utils/small_vector.h"
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu/xpu_op_list.h"
#endif
DECLARE_bool(check_nan_inf);
DECLARE_bool(run_pten_kernel);

namespace egr {

const paddle::framework::Tensor* GetTensorFromVar(
    const paddle::framework::Variable& var) {
  if (var.IsType<paddle::framework::LoDTensor>()) {
    return &(var.Get<paddle::framework::LoDTensor>());
  } else if (var.IsType<paddle::framework::SelectedRows>()) {
    return &(var.Get<paddle::framework::SelectedRows>().value());
  } else {
    return nullptr;
  }
}

static const paddle::framework::Attribute& GetAttr(
    const paddle::framework::AttributeMap& attrs,
    const paddle::framework::AttributeMap& default_attrs,
    const std::string& name) {
  auto it = attrs.find(name);
  bool found = it != attrs.end();
  if (!found) {
    it = default_attrs.find(name);
    found = it != default_attrs.end();
  }
  PADDLE_ENFORCE_EQ(found, true,
                    paddle::platform::errors::NotFound(
                        "(%s) is not found in AttributeMap.", name));
  return it->second;
}

static void HandleComplexGradToRealGrad(const NameTensorMap& outs) {
  // TODO(jiabin): Support complex forward datatype later.
}

PreparedOp::PreparedOp(
    const paddle::framework::OperatorBase& op,
    const paddle::framework::RuntimeContext& ctx,
    const paddle::framework::OpKernelType& kernel_type,
    const paddle::framework::OperatorWithKernel::OpKernelFunc& func,
    paddle::platform::DeviceContext* dev_ctx)
    : op_(op),
      ctx_(ctx),
      kernel_type_(kernel_type),
      func_(func),
      dev_ctx_(dev_ctx) {}

PreparedOp PrepareImpl(const NameTensorMap& ins, const NameTensorMap& outs,
                       const paddle::framework::OperatorWithKernel& op,
                       const paddle::platform::Place& place,
                       const paddle::framework::AttributeMap& attrs,
                       const paddle::framework::AttributeMap& default_attrs) {
  paddle::platform::DeviceContextPool& pool =
      paddle::platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place);

  paddle::framework::RuntimeContext ctx({}, {});

#ifdef PADDLE_WITH_MKLDNN
  // MKLDNN variant of code reads attributes in some of GetKernelTypeForVar and
  // GetKernelType functions, so we need to copy the attributes there.
  // Const qualifier of Attrs had to be discarded to overwrite it.
  if (FLAGS_use_mkldnn) {
    auto& mutable_op_attrs =
        const_cast<paddle::framework::AttributeMap&>(op.Attrs());
    mutable_op_attrs = default_attrs;
    for (auto& attr : attrs) {
      mutable_op_attrs[attr.first] = attr.second;
    }
  }
#endif

  // 1. get expected kernel key
  auto dygraph_exe_ctx =
      egr::EagerExecutionContext(op, paddle::framework::Scope(), *dev_ctx, ctx,
                                 ins, outs, attrs, default_attrs);
  auto expected_kernel_key = op.GetExpectedKernelType(dygraph_exe_ctx);
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

  // 2. check if op[type] has kernel registered.
  auto& all_op_kernels = op.AllOpKernels();
  auto kernels_iter = all_op_kernels.find(op.Type());
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      paddle::platform::errors::NotFound(
          "There are no kernels which are registered in the %s operator.",
          op.Type()));

  auto& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_XPU
  if (is_xpu_place(expected_kernel_key.place_) &&
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(op.Type(), expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(op.Type()))) {
    VLOG(3) << "missing XPU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = paddle::platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
      is_npu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing NPU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = paddle::platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
  // TODO(jiabin): Add operator.cc's line 1000 part back when we need that
  // case
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    paddle::platform::errors::NotFound(
                        "Operator %s does not have kernel for %s.", op.Type(),
                        KernelTypeToString(expected_kernel_key)));

  if (!(expected_kernel_key.place_ == place)) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
  }

  return PreparedOp(op, ctx, expected_kernel_key, kernel_iter->second, dev_ctx);
}

PreparedOp PreparedOp::Prepare(
    const NameTensorMap& ins, const NameTensorMap& outs,
    const paddle::framework::OperatorWithKernel& op,
    const paddle::platform::Place& place,
    const paddle::framework::AttributeMap& attrs,
    const paddle::framework::AttributeMap& default_attrs) {
  return PrepareImpl(ins, outs, op, place, attrs, default_attrs);
}

static void PreparedOpRunImpl(
    const paddle::framework::OperatorBase& op,
    const paddle::framework::RuntimeContext& ctx,
    const paddle::framework::OpKernelType& kernel_type,
    const paddle::framework::OperatorWithKernel::OpKernelFunc& func,
    paddle::platform::DeviceContext* dev_ctx, const NameTensorMap& ins,
    const NameTensorMap& outs, const paddle::framework::AttributeMap& attrs,
    const paddle::framework::AttributeMap& default_attrs) {
  // TODO(zjl): remove scope in dygraph
  paddle::framework::Scope scope;

  EagerInferShapeContext infer_shape_ctx(&ins, &outs, &attrs, &default_attrs,
                                         op.Type());
  static_cast<const paddle::framework::OperatorWithKernel&>(op).InferShape(
      &infer_shape_ctx);

  func(EagerExecutionContext(op, scope, *dev_ctx, ctx, ins, outs, attrs,
                             default_attrs));

  if (FLAGS_check_nan_inf) {
    paddle::framework::details::CheckOpHasNanOrInfInEager<EagerTensor>(
        op.Type(), outs, dev_ctx->GetPlace());
  }

  /**
   * [ Why need handle complex gradient to real gradient? ]
   *
   * After the introduction of complex number calculations, Ops that support
   * complex number calculations generally support type promotion, such as
   * x(float32) + y(complex64) = out(complex64), then the type of the grad
   * tensor should be dout(complex64), dx(float32), dy (complex64).
   *
   * But because the dout is complex64, the dx is also complex64 after
   * grad op kernel executed, we need to recognize this situation and
   * convert dx to float32 type. HandleComplexGradToRealGrad does this thing.
   */
  if (paddle::framework::IsComplexType(kernel_type.data_type_)) {
    HandleComplexGradToRealGrad(outs);
  }
}

void PreparedOp::Run(const NameTensorMap& ins, const NameTensorMap& outs,
                     const paddle::framework::AttributeMap& attrs,
                     const paddle::framework::AttributeMap& default_attrs) {
  PreparedOpRunImpl(op_, ctx_, kernel_type_, func_, dev_ctx_, ins, outs, attrs,
                    default_attrs);
}

std::shared_ptr<NameTensorMap> PrepareData(
    const paddle::framework::OperatorWithKernel& op, const NameTensorMap& ins,
    const paddle::framework::OpKernelType& expected_kernel_key) {
  std::shared_ptr<NameTensorMap> tmp_ins_ptr = nullptr;
  for (const auto& name_pair : ins) {
    for (size_t i = 0; i < name_pair.second.size(); ++i) {
      auto& egr_tensor = name_pair.second[i];
      const auto* tensor = GetTensorFromVar(egr_tensor->Var());
      if (tensor && tensor->IsInitialized()) {
        auto kernel_type_for_var = op.GetKernelTypeForVar(
            name_pair.first, *tensor, expected_kernel_key);
        if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
          continue;
        } else {
          // TODO(jiabin): Support Cache later
          VLOG(3) << "Transform Variable " << egr_tensor->name() << " from "
                  << kernel_type_for_var << " to " << expected_kernel_key;
          paddle::framework::Tensor out;
          TransformData(expected_kernel_key, kernel_type_for_var, *tensor,
                        &out);
          if (NeedTransformDataType(kernel_type_for_var, expected_kernel_key)) {
            // To avoid NameVarMap copy construction overhead in general
            // scenarios, if inplace transformed, return original input
            // directly
            if (tmp_ins_ptr == nullptr) {
              tmp_ins_ptr = std::make_shared<NameTensorMap>(ins);
            }
            auto tmp_egr_tensor =
                std::make_shared<EagerTensor>(egr_tensor->name());
            SetTensorToVariable(egr_tensor->Var(), out,
                                tmp_egr_tensor->MutableVar());
            (*tmp_ins_ptr)[name_pair.first][i] = tmp_egr_tensor;
          } else {
            // if dtype is same, transform inplace will not change the
            // original
            // value, transform inplace to avoid multiple copy
            SetTensorToVariable(egr_tensor->Var(), out,
                                egr_tensor->MutableVar());
          }
        }
      }
    }
  }
  return tmp_ins_ptr;
}
}  // namespace egr