// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/eager/legacy/prepared_operator.h" #include "paddle/fluid/eager/legacy/infer_shape_context.h" #include "paddle/fluid/framework/data_type_transform.h" #include "paddle/fluid/framework/details/nan_inf_utils.h" #include "paddle/fluid/framework/pten_utils.h" #include "paddle/utils/small_vector.h" #ifdef PADDLE_WITH_XPU #include "paddle/fluid/platform/xpu/xpu_op_list.h" #endif DECLARE_bool(check_nan_inf); DECLARE_bool(run_pten_kernel); namespace egr { const paddle::framework::Tensor* GetTensorFromVar( const paddle::framework::Variable& var) { if (var.IsType()) { return &(var.Get()); } else if (var.IsType()) { return &(var.Get().value()); } else { return nullptr; } } static const paddle::framework::Attribute& GetAttr( const paddle::framework::AttributeMap& attrs, const paddle::framework::AttributeMap& default_attrs, const std::string& name) { auto it = attrs.find(name); bool found = it != attrs.end(); if (!found) { it = default_attrs.find(name); found = it != default_attrs.end(); } PADDLE_ENFORCE_EQ(found, true, paddle::platform::errors::NotFound( "(%s) is not found in AttributeMap.", name)); return it->second; } static void HandleComplexGradToRealGrad(const NameTensorMap& outs) { // TODO(jiabin): Support complex forward datatype later. } PreparedOp::PreparedOp( const paddle::framework::OperatorBase& op, const paddle::framework::RuntimeContext& ctx, const paddle::framework::OpKernelType& kernel_type, const paddle::framework::OperatorWithKernel::OpKernelFunc& func, paddle::platform::DeviceContext* dev_ctx) : op_(op), ctx_(ctx), kernel_type_(kernel_type), func_(func), dev_ctx_(dev_ctx) {} PreparedOp PrepareImpl(const NameTensorMap& ins, const NameTensorMap& outs, const paddle::framework::OperatorWithKernel& op, const paddle::platform::Place& place, const paddle::framework::AttributeMap& attrs, const paddle::framework::AttributeMap& default_attrs) { paddle::platform::DeviceContextPool& pool = paddle::platform::DeviceContextPool::Instance(); auto* dev_ctx = pool.Get(place); paddle::framework::RuntimeContext ctx({}, {}); #ifdef PADDLE_WITH_MKLDNN // MKLDNN variant of code reads attributes in some of GetKernelTypeForVar and // GetKernelType functions, so we need to copy the attributes there. // Const qualifier of Attrs had to be discarded to overwrite it. if (FLAGS_use_mkldnn) { auto& mutable_op_attrs = const_cast(op.Attrs()); mutable_op_attrs = default_attrs; for (auto& attr : attrs) { mutable_op_attrs[attr.first] = attr.second; } } #endif // 1. get expected kernel key auto dygraph_exe_ctx = egr::EagerExecutionContext(op, paddle::framework::Scope(), *dev_ctx, ctx, ins, outs, attrs, default_attrs); auto expected_kernel_key = op.GetExpectedKernelType(dygraph_exe_ctx); VLOG(3) << "expected_kernel_key:" << expected_kernel_key; // 2. check if op[type] has kernel registered. auto& all_op_kernels = op.AllOpKernels(); auto kernels_iter = all_op_kernels.find(op.Type()); PADDLE_ENFORCE_NE( kernels_iter, all_op_kernels.end(), paddle::platform::errors::NotFound( "There are no kernels which are registered in the %s operator.", op.Type())); auto& kernels = kernels_iter->second; auto kernel_iter = kernels.find(expected_kernel_key); #ifdef PADDLE_WITH_XPU if (is_xpu_place(expected_kernel_key.place_) && (kernel_iter == kernels.end() || !paddle::platform::is_xpu_support_op(op.Type(), expected_kernel_key) || paddle::platform::is_in_xpu_black_list(op.Type()))) { VLOG(3) << "missing XPU kernel: " << op.Type() << ", expected_kernel_key:" << expected_kernel_key << ", fallbacking to CPU one!"; expected_kernel_key.place_ = paddle::platform::CPUPlace(); kernel_iter = kernels.find(expected_kernel_key); } #endif #ifdef PADDLE_WITH_ASCEND_CL if (kernel_iter == kernels.end() && is_npu_place(expected_kernel_key.place_)) { VLOG(3) << "missing NPU kernel: " << op.Type() << ", expected_kernel_key:" << expected_kernel_key << ", fallbacking to CPU one!"; expected_kernel_key.place_ = paddle::platform::CPUPlace(); kernel_iter = kernels.find(expected_kernel_key); } #endif // TODO(jiabin): Add operator.cc's line 1000 part back when we need that // case PADDLE_ENFORCE_NE(kernel_iter, kernels.end(), paddle::platform::errors::NotFound( "Operator %s does not have kernel for %s.", op.Type(), KernelTypeToString(expected_kernel_key))); if (!(expected_kernel_key.place_ == place)) { dev_ctx = pool.Get(expected_kernel_key.place_); } return PreparedOp(op, ctx, expected_kernel_key, kernel_iter->second, dev_ctx); } PreparedOp PreparedOp::Prepare( const NameTensorMap& ins, const NameTensorMap& outs, const paddle::framework::OperatorWithKernel& op, const paddle::platform::Place& place, const paddle::framework::AttributeMap& attrs, const paddle::framework::AttributeMap& default_attrs) { return PrepareImpl(ins, outs, op, place, attrs, default_attrs); } static void PreparedOpRunImpl( const paddle::framework::OperatorBase& op, const paddle::framework::RuntimeContext& ctx, const paddle::framework::OpKernelType& kernel_type, const paddle::framework::OperatorWithKernel::OpKernelFunc& func, paddle::platform::DeviceContext* dev_ctx, const NameTensorMap& ins, const NameTensorMap& outs, const paddle::framework::AttributeMap& attrs, const paddle::framework::AttributeMap& default_attrs) { // TODO(zjl): remove scope in dygraph paddle::framework::Scope scope; EagerInferShapeContext infer_shape_ctx(&ins, &outs, &attrs, &default_attrs, op.Type()); static_cast(op).InferShape( &infer_shape_ctx); func(EagerExecutionContext(op, scope, *dev_ctx, ctx, ins, outs, attrs, default_attrs)); if (FLAGS_check_nan_inf) { paddle::framework::details::CheckOpHasNanOrInfInEager( op.Type(), outs, dev_ctx->GetPlace()); } /** * [ Why need handle complex gradient to real gradient? ] * * After the introduction of complex number calculations, Ops that support * complex number calculations generally support type promotion, such as * x(float32) + y(complex64) = out(complex64), then the type of the grad * tensor should be dout(complex64), dx(float32), dy (complex64). * * But because the dout is complex64, the dx is also complex64 after * grad op kernel executed, we need to recognize this situation and * convert dx to float32 type. HandleComplexGradToRealGrad does this thing. */ if (paddle::framework::IsComplexType(kernel_type.data_type_)) { HandleComplexGradToRealGrad(outs); } } void PreparedOp::Run(const NameTensorMap& ins, const NameTensorMap& outs, const paddle::framework::AttributeMap& attrs, const paddle::framework::AttributeMap& default_attrs) { PreparedOpRunImpl(op_, ctx_, kernel_type_, func_, dev_ctx_, ins, outs, attrs, default_attrs); } std::shared_ptr PrepareData( const paddle::framework::OperatorWithKernel& op, const NameTensorMap& ins, const paddle::framework::OpKernelType& expected_kernel_key) { std::shared_ptr tmp_ins_ptr = nullptr; for (const auto& name_pair : ins) { for (size_t i = 0; i < name_pair.second.size(); ++i) { auto& egr_tensor = name_pair.second[i]; const auto* tensor = GetTensorFromVar(egr_tensor->Var()); if (tensor && tensor->IsInitialized()) { auto kernel_type_for_var = op.GetKernelTypeForVar( name_pair.first, *tensor, expected_kernel_key); if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) { continue; } else { // TODO(jiabin): Support Cache later VLOG(3) << "Transform Variable " << egr_tensor->name() << " from " << kernel_type_for_var << " to " << expected_kernel_key; paddle::framework::Tensor out; TransformData(expected_kernel_key, kernel_type_for_var, *tensor, &out); if (NeedTransformDataType(kernel_type_for_var, expected_kernel_key)) { // To avoid NameVarMap copy construction overhead in general // scenarios, if inplace transformed, return original input // directly if (tmp_ins_ptr == nullptr) { tmp_ins_ptr = std::make_shared(ins); } auto tmp_egr_tensor = std::make_shared(egr_tensor->name()); SetTensorToVariable(egr_tensor->Var(), out, tmp_egr_tensor->MutableVar()); (*tmp_ins_ptr)[name_pair.first][i] = tmp_egr_tensor; } else { // if dtype is same, transform inplace will not change the // original // value, transform inplace to avoid multiple copy SetTensorToVariable(egr_tensor->Var(), out, egr_tensor->MutableVar()); } } } } } return tmp_ins_ptr; } } // namespace egr