test_jit_save_load.py 28.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import os
18
import pickle
19 20
import unittest
import numpy as np
L
Leo Chen 已提交
21
import paddle
22
from paddle.static import InputSpec
23
import paddle.fluid as fluid
24
from paddle.fluid.layers.utils import flatten
25
from paddle.fluid.dygraph import Linear
26
from paddle.fluid.dygraph import declarative, ProgramTranslator
27
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX, INFER_PARAMS_INFO_SUFFIX
28 29

BATCH_SIZE = 32
30
BATCH_NUM = 10
31 32 33
SEED = 10


34 35
def random_batch_reader(input_size, label_size):
    def _get_random_inputs_and_labels(input_size, label_size):
36
        np.random.seed(SEED)
37 38 39
        input = np.random.random(size=input_size).astype('float32')
        label = np.random.random(size=label_size).astype('int64')
        return input, label
40 41 42

    def __reader__():
        for _ in range(BATCH_NUM):
43 44 45
            batch_input, batch_label = _get_random_inputs_and_labels(
                [BATCH_SIZE, input_size], [BATCH_SIZE, label_size])
            yield batch_input, batch_label
46 47 48 49 50 51 52 53 54 55 56 57 58 59

    return __reader__


class LinearNet(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNet, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        return self._linear(x)


60 61 62 63 64 65 66 67 68 69
class LinearNetWithInputSpec(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithInputSpec, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
    def forward(self, x):
        return self._linear(x)


70 71 72 73 74 75 76 77 78
class LinearNetNotDeclarative(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetNotDeclarative, self).__init__()
        self._linear = Linear(in_size, out_size)

    def forward(self, x):
        return self._linear(x)


79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
class LinerNetWithLabel(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
        super(LinerNetWithLabel, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[
        InputSpec(
            shape=[None, 784], dtype='float32', name="image"), InputSpec(
                shape=[None, 1], dtype='int64', name="label")
    ])
    def forward(self, x, label):
        out = self._linear(x)
        loss = fluid.layers.cross_entropy(out, label)
        avg_loss = fluid.layers.mean(loss)
        return out, avg_loss


96 97 98 99 100 101 102 103 104 105 106 107 108
class LinearNetReturnLoss(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetReturnLoss, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear(x)
        z = self._linear(y)
        loss = fluid.layers.mean(z)
        return z, loss


109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
class LinearNetMultiInput(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetMultiInput, self).__init__()
        self._linear1 = Linear(in_size, out_size)
        self._linear2 = Linear(in_size, out_size)

    @declarative(input_spec=[
        InputSpec(
            [None, 8], dtype='float32'), InputSpec(
                [None, 8], dtype='float32')
    ])
    def forward(self, x, y):
        x_out = self._linear1(x)
        y_out = self._linear2(y)
        loss = fluid.layers.mean(x_out + y_out)
        return x_out, y_out, loss


class MultiLoadingLinearNet(fluid.dygraph.Layer):
    def __init__(self, size, model_path):
        super(MultiLoadingLinearNet, self).__init__()
        self._linear = Linear(size, size)
131 132
        self._load_linear1 = paddle.jit.load(model_path)
        self._load_linear2 = paddle.jit.load(model_path)
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

    @declarative
    def forward(self, x):
        tmp1 = self._linear(x)
        tmp2 = self._load_linear1(tmp1)
        tmp3 = self._load_linear2(tmp2)
        y = self._linear(tmp3)
        return y


class LinearNetReturnHidden(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetReturnHidden, self).__init__()
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
        loss = fluid.layers.mean(z)
        return y, loss


157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
class LinearNetWithNestOut(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithNestOut, self).__init__()
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
        out = y + z
        loss = fluid.layers.mean(out)
        return y, [(z, loss), out]


172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
class LinearNetWithDictInput(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithDictInput, self).__init__()
        self._linear = Linear(in_size, out_size)

    @paddle.jit.to_static(input_spec=[{
        'img': InputSpec(
            shape=[None, 8], dtype='float32', name='img')
    }, {
        'label': InputSpec(
            shape=[None, 1], dtype='int64', name='label')
    }])
    def forward(self, img, label):
        out = self._linear(img['img'])
        # not return loss to avoid prune output
        loss = paddle.nn.functional.cross_entropy(out, label['label'])
        return out


191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
class EmptyLayer(paddle.nn.Layer):
    def __init__(self):
        super(EmptyLayer, self).__init__()

    @paddle.jit.to_static
    def forward(self, x):
        return x


class NoParamLayer(paddle.nn.Layer):
    def __init__(self):
        super(NoParamLayer, self).__init__()

    @paddle.jit.to_static
    def forward(self, x, y):
        return x + y


209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
class LinearNetWithMultiStaticFunc(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithMultiStaticFunc, self).__init__()
        self._linear_0 = Linear(in_size, out_size)
        self._linear_1 = Linear(in_size, out_size)
        self._scale = paddle.to_tensor(9.9)

    @paddle.jit.to_static
    def forward(self, x):
        return self._linear_0(x)

    @paddle.jit.to_static
    def forward_no_param(self, x):
        return x

    @paddle.jit.to_static
    def forward_general(self, x):
        return self._linear_0(x) + self._linear_1(x) * self._scale


229
def train(layer, input_size=784, label_size=1):
230
    # create optimizer
L
Leo Chen 已提交
231
    sgd = fluid.optimizer.SGDOptimizer(
232
        learning_rate=0.01, parameter_list=layer.parameters())
233 234
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
235 236
    train_loader.set_batch_generator(
        random_batch_reader(input_size, label_size))
237 238 239 240 241 242 243 244 245 246 247
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        cost = layer(img)

        loss = fluid.layers.cross_entropy(cost, label)
        avg_loss = fluid.layers.mean(loss)

        avg_loss.backward()
L
Leo Chen 已提交
248
        sgd.minimize(avg_loss)
249 250 251 252
        layer.clear_gradients()
    return [img], layer, avg_loss


253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
def train_with_label(layer, input_size=784, label_size=1):
    # create optimizer
    sgd = fluid.optimizer.SGDOptimizer(
        learning_rate=0.01, parameter_list=layer.parameters())
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
    train_loader.set_batch_generator(
        random_batch_reader(input_size, label_size))
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        out, avg_loss = layer(img, label)

        avg_loss.backward()
        sgd.minimize(avg_loss)
        layer.clear_gradients()
    return out


274 275
class TestJitSaveLoad(unittest.TestCase):
    def setUp(self):
276
        self.model_path = "test_jit_save_load/model"
277 278 279
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
280
        paddle.seed(SEED)
L
Leo Chen 已提交
281
        paddle.framework.random._manual_program_seed(SEED)
282

283
    def train_and_save_model(self, model_path=None):
284 285
        layer = LinearNet(784, 1)
        example_inputs, layer, _ = train(layer)
286
        final_model_path = model_path if model_path else self.model_path
287
        orig_input_types = [type(x) for x in example_inputs]
288 289
        paddle.jit.save(
            layer=layer, path=final_model_path, input_spec=example_inputs)
290 291
        new_input_types = [type(x) for x in example_inputs]
        self.assertEqual(orig_input_types, new_input_types)
292 293
        return layer

294
    def test_save_load(self):
295 296 297
        # train and save model
        train_layer = self.train_and_save_model()
        # load model
298
        loaded_layer = paddle.jit.load(self.model_path)
299 300 301 302 303
        self.load_and_inference(train_layer, loaded_layer)
        self.load_dygraph_state_dict(train_layer)
        self.load_and_finetune(train_layer, loaded_layer)

    def load_and_inference(self, train_layer, infer_layer):
304
        train_layer.eval()
305
        infer_layer.eval()
306 307 308 309 310 311
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), infer_layer(x).numpy()))

312 313
    def load_and_finetune(self, train_layer, load_train_layer):
        train_layer.train()
314 315
        load_train_layer.train()
        # train & compare
L
Leo Chen 已提交
316 317
        img0, _, train_loss = train(train_layer)
        img1, _, load_train_loss = train(load_train_layer)
318 319 320
        self.assertTrue(
            np.array_equal(train_loss.numpy(), load_train_loss.numpy()))

321 322
    def load_dygraph_state_dict(self, train_layer):
        train_layer.eval()
323
        # construct new model
324
        new_layer = LinearNet(784, 1)
325
        orig_state_dict = new_layer.state_dict()
326
        load_state_dict = paddle.load(self.model_path)
327 328 329
        for structured_name in orig_state_dict:
            self.assertTrue(structured_name in load_state_dict)
        new_layer.set_state_dict(load_state_dict)
330 331 332 333 334 335 336
        new_layer.eval()
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), new_layer(x).numpy()))

337
    def test_load_dygraph_no_path(self):
338
        model_path = "test_jit_save_load.no_path/model_path"
339 340 341
        with self.assertRaises(ValueError):
            model_dict, _ = fluid.dygraph.load_dygraph(model_path)

342
    def test_jit_load_model_incomplete(self):
343 344 345 346
        model_path = "test_jit_save_load.remove_variables/model"
        self.train_and_save_model(model_path)
        # remove `.pdiparams`	
        var_path = model_path + INFER_PARAMS_SUFFIX
347 348 349 350
        os.remove(var_path)
        with self.assertRaises(ValueError):
            paddle.jit.load(model_path)

351 352 353 354 355
    def test_jit_load_no_path(self):
        path = "test_jit_save_load.no_path/model_path"
        with self.assertRaises(ValueError):
            loaded_layer = paddle.jit.load(path)

356

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
class TestSaveLoadWithNestOut(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()

    def test_nest_output(self):
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))

        net = LinearNetWithNestOut(8, 8)
        dy_outs = flatten(net(x))
        net = declarative(net, input_spec=[InputSpec([None, 8], name='x')])

        model_path = "net_with_nest_out/model"
        paddle.jit.save(net, model_path)

        load_net = paddle.jit.load(model_path)
        load_outs = flatten(load_net(x))

        self.assertTrue(len(dy_outs) == 4)
        for dy_out, load_out in zip(dy_outs, load_outs):
            self.assertTrue(np.allclose(dy_out.numpy(), load_out.numpy()))


381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
class TestSaveLoadWithDictInput(unittest.TestCase):
    def test_dict_input(self):
        # NOTE: This net cannot be executed, it is just 
        # a special case for exporting models in model validation
        # We DO NOT recommend this writing way of Layer
        net = LinearNetWithDictInput(8, 8)
        # net.forward.concrete_program.inputs: 
        # (<__main__.LinearNetWithDictInput object at 0x7f2655298a98>, 
        #  {'img': var img : fluid.VarType.LOD_TENSOR.shape(-1, 8).astype(VarType.FP32)}, 
        #  {'label': var label : fluid.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)})
        self.assertEqual(len(net.forward.concrete_program.inputs), 3)

        path = "test_jit_save_load_with_dict_input/model"
        # prune inputs
        paddle.jit.save(
            layer=net,
            path=path,
            input_spec=[{
                'img': InputSpec(
                    shape=[None, 8], dtype='float32', name='img')
            }])

        img = paddle.randn(shape=[4, 8], dtype='float32')
        loaded_net = paddle.jit.load(path)
        loaded_out = loaded_net(img)

        # loaded_net._input_spec():
        # [InputSpec(shape=(-1, 8), dtype=VarType.FP32, name=img)]
        self.assertEqual(len(loaded_net._input_spec()), 1)


412 413 414 415 416 417 418 419 420 421 422 423
class TestSaveLoadWithInputSpec(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()

    def test_with_input_spec(self):
        net = LinearNetReturnLoss(8, 8)
        # set x.shape = [None, 8]
        net.forward = declarative(
            net.forward, input_spec=[InputSpec(
                [None, 8], name='x')])

424
        model_path = "input_spec.output_spec/model"
425 426 427 428 429 430 431
        # check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 1)
        input_x = net.forward.inputs[0]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_x.name == 'x')

        # 1. prune loss
432 433
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, output_spec=output_spec)
434 435

        # 2. load to infer
436
        infer_layer = paddle.jit.load(model_path)
437 438 439 440 441 442 443
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        pred = infer_layer(x)

    def test_multi_in_out(self):
        net = LinearNetMultiInput(8, 8)

444
        model_path = "multi_inout.output_spec1/model"
445 446 447 448 449 450 451 452
        # 1. check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 2)
        input_x = net.forward.inputs[0]
        input_y = net.forward.inputs[1]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_y.shape == (-1, 8))

        # 2. prune loss
453 454
        output_spec = net.forward.outputs[:2]
        paddle.jit.save(net, model_path, output_spec=output_spec)
455 456

        # 3. load to infer
457
        infer_layer = paddle.jit.load(model_path)
458 459 460 461 462 463 464 465
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        y = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        # 4. predict
        pred_x, pred_y = infer_layer(x, y)

        # 1. prune y and loss
466 467 468
        model_path = "multi_inout.output_spec2/model"
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, [input_x], output_spec=output_spec)
469
        # 2. load again
470
        infer_layer2 = paddle.jit.load(model_path)
471 472 473 474 475 476 477
        # 3. predict
        pred_xx = infer_layer2(x)

        # 4. assert pred_x == pred_xx
        self.assertTrue(np.allclose(pred_x.numpy(), pred_xx.numpy()))


478 479 480 481 482
class TestJitSaveLoadConfig(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
483
        paddle.seed(SEED)
L
Leo Chen 已提交
484
        paddle.framework.random._manual_program_seed(SEED)
485 486 487 488 489 490 491 492 493 494 495 496 497

    def test_output_spec(self):
        train_layer = LinearNetReturnLoss(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            out, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

498 499 500
        model_path = "save_load_config.output_spec"
        output_spec = [out]
        paddle.jit.save(
501
            layer=train_layer,
502
            path=model_path,
503
            input_spec=[x],
504
            output_spec=output_spec)
505 506

        train_layer.eval()
507
        infer_layer = paddle.jit.load(model_path)
508 509 510 511 512
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
    def test_save_no_support_config_error(self):
        layer = LinearNet(784, 1)
        path = "no_support_config_test"
        with self.assertRaises(ValueError):
            paddle.jit.save(layer=layer, path=path, model_filename="")

    def test_load_empty_model_filename_error(self):
        path = "error_model_filename_test"
        with self.assertRaises(ValueError):
            paddle.jit.load(path, model_filename="")

    def test_load_empty_params_filename_error(self):
        path = "error_params_filename_test"
        with self.assertRaises(ValueError):
            paddle.jit.load(path, params_filename="")

    def test_load_with_no_support_config(self):
        path = "no_support_config_test"
        with self.assertRaises(ValueError):
            paddle.jit.load(path, separate_params=True)

534

535 536 537
class TestJitMultipleLoading(unittest.TestCase):
    def setUp(self):
        self.linear_size = 4
538
        self.model_path = "jit_multi_load/model"
539 540 541
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
542
        paddle.seed(SEED)
L
Leo Chen 已提交
543
        paddle.framework.random._manual_program_seed(SEED)
544 545 546 547 548 549
        # train and save base model
        self.train_and_save_orig_model()

    def train_and_save_orig_model(self):
        layer = LinearNet(self.linear_size, self.linear_size)
        example_inputs, layer, _ = train(layer, self.linear_size, 1)
550 551
        paddle.jit.save(
            layer=layer, path=self.model_path, input_spec=example_inputs)
552 553 554 555 556 557 558 559 560 561 562

    def test_load_model_retransform_inference(self):
        multi_loaded_layer = MultiLoadingLinearNet(self.linear_size,
                                                   self.model_path)
        state_dict = multi_loaded_layer.state_dict()
        name_set = set()
        for _, var in state_dict.items():
            self.assertTrue(var.name not in name_set)
            name_set.add(var.name)


563 564 565
class TestJitPruneModelAndLoad(unittest.TestCase):
    def setUp(self):
        self.linear_size = 4
566
        self.model_path = "jit_prune_model_and_load/model"
567 568 569
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
570
        paddle.seed(SEED)
L
Leo Chen 已提交
571
        paddle.framework.random._manual_program_seed(SEED)
572 573 574 575 576 577 578 579 580 581 582 583 584

    def train_and_save(self):
        train_layer = LinearNetReturnHidden(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            hidden, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

585 586
        output_spec = [hidden]
        paddle.jit.save(
587
            layer=train_layer,
588
            path=self.model_path,
589
            input_spec=[x],
590
            output_spec=output_spec)
591 592 593 594 595 596 597

        return train_layer

    def test_load_pruned_model(self):
        train_layer = self.train_and_save()
        train_layer.eval()

598
        infer_layer = paddle.jit.load(self.model_path)
599 600 601 602 603 604 605 606 607 608

        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))

    def test_load_var_not_in_extra_var_info(self):
        self.train_and_save()

        # chage extra var info
609
        var_info_path = self.model_path + INFER_PARAMS_INFO_SUFFIX
610 611 612 613 614 615 616
        with open(var_info_path, 'rb') as f:
            extra_var_info = pickle.load(f)
            extra_var_info.clear()
        with open(var_info_path, 'wb') as f:
            pickle.dump(extra_var_info, f, protocol=2)

        with self.assertRaises(RuntimeError):
617
            paddle.jit.load(self.model_path)
618 619


620 621 622 623 624
class TestJitSaveMultiCases(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
625
        paddle.seed(SEED)
626 627 628 629 630 631 632
        paddle.framework.random._manual_program_seed(SEED)

    def verify_inference_correctness(self, layer, model_path, with_label=False):
        layer.eval()
        loaded_layer = paddle.jit.load(model_path)
        loaded_layer.eval()
        # inference & compare
Z
Zhou Wei 已提交
633
        x = paddle.to_tensor(np.random.random((1, 784)).astype('float32'))
634
        if with_label:
Z
Zhou Wei 已提交
635
            y = paddle.to_tensor(np.random.random((1, 1)).astype('int64'))
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
            pred, _ = layer(x, y)
            pred = pred.numpy()
        else:
            pred = layer(x).numpy()
        loaded_pred = loaded_layer(x).numpy()
        self.assertTrue(
            np.array_equal(pred, loaded_pred),
            msg="Result diff when load and inference:\nlayer result:\n{}\n" \
                "loaded layer result:\n{}".format(pred, loaded_pred))

    def test_no_prune_to_static_after_train(self):
        layer = LinearNet(784, 1)

        train(layer)

651
        model_path = "test_no_prune_to_static_after_train/model"
652 653 654 655 656 657 658
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_to_static_no_train(self):
        layer = LinearNetWithInputSpec(784, 1)

659
        model_path = "test_no_prune_to_static_no_train/model"
660 661 662 663 664 665 666 667 668
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train(self):
        layer = LinearNetNotDeclarative(784, 1)

        train(layer)

669
        model_path = "test_no_prune_no_to_static_after_train/model"
670 671 672 673 674 675 676 677 678 679 680 681 682
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train_with_examples(self):
        layer = LinearNetNotDeclarative(784, 1)

        example_inputs, _, _ = train(layer)

683 684
        model_path = "test_no_prune_no_to_static_after_train_with_examples/model"
        paddle.jit.save(layer=layer, path=model_path, input_spec=example_inputs)
685 686 687 688 689 690

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_no_train(self):
        layer = LinearNetNotDeclarative(784, 1)

691
        model_path = "test_no_prune_no_to_static_no_train/model"
692 693 694 695 696 697 698 699 700 701 702 703 704
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])

        self.verify_inference_correctness(layer, model_path)

    def test_prune_to_static_after_train(self):
        layer = LinerNetWithLabel(784, 1)

        out = train_with_label(layer)

705
        model_path = "test_prune_to_static_after_train/model"
706 707 708 709 710 711 712
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name="image")
            ],
713
            output_spec=[out])
714 715 716 717 718 719

        self.verify_inference_correctness(layer, model_path, True)

    def test_prune_to_static_no_train(self):
        layer = LinerNetWithLabel(784, 1)

720
        model_path = "test_prune_to_static_no_train/model"
721 722
        # TODO: no train, cannot get output_spec var here
        # now only can use index
723
        output_spec = layer.forward.outputs[:1]
724 725 726 727 728 729 730
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name="image")
            ],
731
            output_spec=output_spec)
732 733 734 735 736 737 738 739

        self.verify_inference_correctness(layer, model_path, True)

    def test_no_prune_input_spec_name_warning(self):
        layer = LinearNetWithInputSpec(784, 1)

        train(layer)

740
        model_path = "test_no_prune_input_spec_name_warning/model"
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name='feed_input')
            ])

        self.verify_inference_correctness(layer, model_path)

    def test_not_prune_output_spec_name_warning(self):
        layer = LinearNet(784, 1)

        train(layer)

761
        model_path = "test_not_prune_output_spec_name_warning/model"
Z
Zhou Wei 已提交
762
        out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
763
        paddle.jit.save(layer, model_path, output_spec=[out])
764 765 766 767 768 769

        self.verify_inference_correctness(layer, model_path)

    def test_prune_input_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

770
        model_path = "test_prune_input_spec_name_error/model"
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[InputSpec(
                    shape=[None, 784], dtype='float32')])
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[
                    InputSpec(
                        shape=[None, 784], dtype='float32', name='feed_input')
                ])

    def test_prune_output_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

        train_with_label(layer)

791
        model_path = "test_prune_to_static_after_train/model"
Z
Zhou Wei 已提交
792
        out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
793 794 795 796 797 798 799 800
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[
                    InputSpec(
                        shape=[None, 784], dtype='float32', name="image")
                ],
801
                output_spec=[out])
802 803


804 805
class TestJitSaveLoadEmptyLayer(unittest.TestCase):
    def setUp(self):
806
        self.model_path = "jit_save_load_empty_layer/model"
807 808 809 810 811
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_empty_layer(self):
        layer = EmptyLayer()
Z
Zhou Wei 已提交
812
        x = paddle.to_tensor(np.random.random((10)).astype('float32'))
813 814 815 816 817 818 819 820 821
        out = layer(x)
        paddle.jit.save(layer, self.model_path)
        load_layer = paddle.jit.load(self.model_path)
        load_out = load_layer(x)
        self.assertTrue(np.array_equal(out, load_out))


class TestJitSaveLoadNoParamLayer(unittest.TestCase):
    def setUp(self):
822
        self.model_path = "jit_save_load_no_param_layer/model"
823 824 825 826 827
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_no_param_layer(self):
        layer = NoParamLayer()
Z
Zhou Wei 已提交
828 829
        x = paddle.to_tensor(np.random.random((5)).astype('float32'))
        y = paddle.to_tensor(np.random.random((5)).astype('float32'))
830 831 832 833 834 835 836
        out = layer(x, y)
        paddle.jit.save(layer, self.model_path)
        load_layer = paddle.jit.load(self.model_path)
        load_out = load_layer(x, y)
        self.assertTrue(np.array_equal(out, load_out))


837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
class TestJitSaveLoadMultiMethods(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()

    def test_jit_save_load_inference(self):
        model_path_inference = "jit_save_load_multi_methods/model"
        IMAGE_SIZE = 224
        layer = LinearNetWithMultiStaticFunc(IMAGE_SIZE, 10)
        inps = paddle.randn([1, IMAGE_SIZE])
        result_origin = {}
        for func in dir(layer):
            if func.startswith('forward'):
                result_origin[func] = getattr(layer, func, None)(inps)
        paddle.jit.save(layer, model_path_inference)
        load_net = paddle.jit.load(model_path_inference)
        for func, result in result_origin.items():
            self.assertTrue(
                float((result - getattr(load_net, func, None)(inps)).abs().max(
                )) < 1e-5)

    def test_jit_save_load_multi_methods_inputspec(self):
        model_path = 'jit_save_load_multi_methods/model'
        layer = LinearNetWithMultiStaticFunc(784, 1)
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer, model_path, input_spec=[InputSpec(shape=[None, 784])])


866 867
if __name__ == '__main__':
    unittest.main()