test_jit_save_load.py 23.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import os
18
import pickle
19 20
import unittest
import numpy as np
L
Leo Chen 已提交
21
import paddle
22
from paddle.static import InputSpec
23 24
import paddle.fluid as fluid
from paddle.fluid.dygraph import Linear
25
from paddle.fluid.dygraph import declarative, ProgramTranslator
26
from paddle.fluid.dygraph.io import EXTRA_VAR_INFO_FILENAME
27 28

BATCH_SIZE = 32
29
BATCH_NUM = 10
30 31 32
SEED = 10


33 34
def random_batch_reader(input_size, label_size):
    def _get_random_inputs_and_labels(input_size, label_size):
35
        np.random.seed(SEED)
36 37 38
        input = np.random.random(size=input_size).astype('float32')
        label = np.random.random(size=label_size).astype('int64')
        return input, label
39 40 41

    def __reader__():
        for _ in range(BATCH_NUM):
42 43 44
            batch_input, batch_label = _get_random_inputs_and_labels(
                [BATCH_SIZE, input_size], [BATCH_SIZE, label_size])
            yield batch_input, batch_label
45 46 47 48 49 50 51 52 53 54 55 56 57 58

    return __reader__


class LinearNet(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNet, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        return self._linear(x)


59 60 61 62 63 64 65 66 67 68
class LinearNetWithInputSpec(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithInputSpec, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
    def forward(self, x):
        return self._linear(x)


69 70 71 72 73 74 75 76 77
class LinearNetNotDeclarative(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetNotDeclarative, self).__init__()
        self._linear = Linear(in_size, out_size)

    def forward(self, x):
        return self._linear(x)


78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
class LinerNetWithLabel(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
        super(LinerNetWithLabel, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[
        InputSpec(
            shape=[None, 784], dtype='float32', name="image"), InputSpec(
                shape=[None, 1], dtype='int64', name="label")
    ])
    def forward(self, x, label):
        out = self._linear(x)
        loss = fluid.layers.cross_entropy(out, label)
        avg_loss = fluid.layers.mean(loss)
        return out, avg_loss


95 96 97 98 99 100 101 102 103 104 105 106 107
class LinearNetReturnLoss(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetReturnLoss, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear(x)
        z = self._linear(y)
        loss = fluid.layers.mean(z)
        return z, loss


108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
class LinearNetMultiInput(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetMultiInput, self).__init__()
        self._linear1 = Linear(in_size, out_size)
        self._linear2 = Linear(in_size, out_size)

    @declarative(input_spec=[
        InputSpec(
            [None, 8], dtype='float32'), InputSpec(
                [None, 8], dtype='float32')
    ])
    def forward(self, x, y):
        x_out = self._linear1(x)
        y_out = self._linear2(y)
        loss = fluid.layers.mean(x_out + y_out)
        return x_out, y_out, loss


class MultiLoadingLinearNet(fluid.dygraph.Layer):
    def __init__(self, size, model_path):
        super(MultiLoadingLinearNet, self).__init__()
        self._linear = Linear(size, size)
        self._load_linear1 = fluid.dygraph.jit.load(model_path)
        self._load_linear2 = fluid.dygraph.jit.load(model_path)

    @declarative
    def forward(self, x):
        tmp1 = self._linear(x)
        tmp2 = self._load_linear1(tmp1)
        tmp3 = self._load_linear2(tmp2)
        y = self._linear(tmp3)
        return y


class LinearNetReturnHidden(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetReturnHidden, self).__init__()
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
        loss = fluid.layers.mean(z)
        return y, loss


156
def train(layer, input_size=784, label_size=1):
157
    # create optimizer
L
Leo Chen 已提交
158
    sgd = fluid.optimizer.SGDOptimizer(
159
        learning_rate=0.01, parameter_list=layer.parameters())
160 161
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
162 163
    train_loader.set_batch_generator(
        random_batch_reader(input_size, label_size))
164 165 166 167 168 169 170 171 172 173 174
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        cost = layer(img)

        loss = fluid.layers.cross_entropy(cost, label)
        avg_loss = fluid.layers.mean(loss)

        avg_loss.backward()
L
Leo Chen 已提交
175
        sgd.minimize(avg_loss)
176 177 178 179
        layer.clear_gradients()
    return [img], layer, avg_loss


180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
def train_with_label(layer, input_size=784, label_size=1):
    # create optimizer
    sgd = fluid.optimizer.SGDOptimizer(
        learning_rate=0.01, parameter_list=layer.parameters())
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
    train_loader.set_batch_generator(
        random_batch_reader(input_size, label_size))
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        out, avg_loss = layer(img, label)

        avg_loss.backward()
        sgd.minimize(avg_loss)
        layer.clear_gradients()
    return out


201 202 203 204 205 206
class TestJitSaveLoad(unittest.TestCase):
    def setUp(self):
        self.model_path = "model.test_jit_save_load"
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
L
Leo Chen 已提交
207 208
        paddle.manual_seed(SEED)
        paddle.framework.random._manual_program_seed(SEED)
209

210
    def train_and_save_model(self, model_path=None, configs=None):
211 212
        layer = LinearNet(784, 1)
        example_inputs, layer, _ = train(layer)
213
        final_model_path = model_path if model_path else self.model_path
214
        orig_input_types = [type(x) for x in example_inputs]
215
        fluid.dygraph.jit.save(
216 217 218 219
            layer=layer,
            model_path=final_model_path,
            input_spec=example_inputs,
            configs=configs)
220 221
        new_input_types = [type(x) for x in example_inputs]
        self.assertEqual(orig_input_types, new_input_types)
222 223
        return layer

224
    def test_save_load(self):
225 226 227
        # train and save model
        train_layer = self.train_and_save_model()
        # load model
228 229 230 231 232 233 234 235 236
        program_translator = ProgramTranslator()
        program_translator.enable(False)
        loaded_layer = fluid.dygraph.jit.load(self.model_path)
        self.load_and_inference(train_layer, loaded_layer)
        self.load_dygraph_state_dict(train_layer)
        self.load_and_finetune(train_layer, loaded_layer)
        program_translator.enable(True)

    def load_and_inference(self, train_layer, infer_layer):
237
        train_layer.eval()
238
        infer_layer.eval()
239 240 241 242 243 244
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), infer_layer(x).numpy()))

245 246
    def load_and_finetune(self, train_layer, load_train_layer):
        train_layer.train()
247 248
        load_train_layer.train()
        # train & compare
L
Leo Chen 已提交
249 250
        img0, _, train_loss = train(train_layer)
        img1, _, load_train_loss = train(load_train_layer)
251 252 253
        self.assertTrue(
            np.array_equal(train_loss.numpy(), load_train_loss.numpy()))

254 255
    def load_dygraph_state_dict(self, train_layer):
        train_layer.eval()
256
        # construct new model
257
        new_layer = LinearNet(784, 1)
258 259 260 261 262
        orig_state_dict = new_layer.state_dict()
        load_state_dict, _ = fluid.dygraph.load_dygraph(self.model_path)
        for structured_name in orig_state_dict:
            self.assertTrue(structured_name in load_state_dict)
        new_layer.set_state_dict(load_state_dict)
263 264 265 266 267 268 269
        new_layer.eval()
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), new_layer(x).numpy()))

270
    def test_load_dygraph_no_path(self):
271 272 273 274 275
        model_path = "model.test_jit_save_load.no_path"
        new_layer = LinearNet(784, 1)
        with self.assertRaises(ValueError):
            model_dict, _ = fluid.dygraph.load_dygraph(model_path)

276

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
class TestSaveLoadWithInputSpec(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()

    def test_with_input_spec(self):
        net = LinearNetReturnLoss(8, 8)
        # set x.shape = [None, 8]
        net.forward = declarative(
            net.forward, input_spec=[InputSpec(
                [None, 8], name='x')])

        model_path = "model.input_spec.output_spec"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        # check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 1)
        input_x = net.forward.inputs[0]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_x.name == 'x')

        # 1. prune loss
        configs.output_spec = net.forward.outputs[:1]
        fluid.dygraph.jit.save(net, model_path, configs=configs)

        # 2. load to infer
        infer_layer = fluid.dygraph.jit.load(model_path, configs=configs)
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        pred = infer_layer(x)

    def test_multi_in_out(self):
        net = LinearNetMultiInput(8, 8)

        model_path = "model.multi_inout.output_spec1"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        # 1. check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 2)
        input_x = net.forward.inputs[0]
        input_y = net.forward.inputs[1]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_y.shape == (-1, 8))

        # 2. prune loss
        configs.output_spec = net.forward.outputs[:2]
        fluid.dygraph.jit.save(net, model_path, configs=configs)

        # 3. load to infer
        infer_layer = fluid.dygraph.jit.load(model_path, configs=configs)
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        y = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        # 4. predict
        pred_x, pred_y = infer_layer(x, y)

        # 1. prune y and loss
        model_path = "model.multi_inout.output_spec2"
        configs.output_spec = net.forward.outputs[:1]
        fluid.dygraph.jit.save(net, model_path, [input_x], configs)
        # 2. load again
        infer_layer2 = fluid.dygraph.jit.load(model_path, configs=configs)
        # 3. predict
        pred_xx = infer_layer2(x)

        # 4. assert pred_x == pred_xx
        self.assertTrue(np.allclose(pred_x.numpy(), pred_xx.numpy()))


345 346 347 348 349
class TestJitSaveLoadConfig(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
L
Leo Chen 已提交
350 351
        paddle.manual_seed(SEED)
        paddle.framework.random._manual_program_seed(SEED)
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419

    def basic_save_load(self, layer, model_path, configs):
        # 1. train & save
        example_inputs, train_layer, _ = train(layer)
        fluid.dygraph.jit.save(
            layer=train_layer,
            model_path=model_path,
            input_spec=example_inputs,
            configs=configs)
        # 2. load 
        infer_layer = fluid.dygraph.jit.load(model_path, configs=configs)
        train_layer.eval()
        # 3. inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), infer_layer(x).numpy()))

    def test_model_filename(self):
        layer = LinearNet(784, 1)
        model_path = "model.save_load_config.output_spec"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        configs.model_filename = "__simplenet__"
        self.basic_save_load(layer, model_path, configs)

    def test_params_filename(self):
        layer = LinearNet(784, 1)
        model_path = "model.save_load_config.params_filename"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        configs.params_filename = "__params__"
        self.basic_save_load(layer, model_path, configs)

    def test_separate_params(self):
        layer = LinearNet(784, 1)
        model_path = "model.save_load_config.separate_params"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        configs.separate_params = True
        self.basic_save_load(layer, model_path, configs)

    def test_output_spec(self):
        train_layer = LinearNetReturnLoss(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            out, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

        model_path = "model.save_load_config.output_spec"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        configs.output_spec = [out]
        fluid.dygraph.jit.save(
            layer=train_layer,
            model_path=model_path,
            input_spec=[x],
            configs=configs)

        train_layer.eval()
        infer_layer = fluid.dygraph.jit.load(model_path, configs=configs)
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))


420 421 422 423 424 425 426
class TestJitMultipleLoading(unittest.TestCase):
    def setUp(self):
        self.linear_size = 4
        self.model_path = "model.jit_multi_load"
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
L
Leo Chen 已提交
427 428
        paddle.manual_seed(SEED)
        paddle.framework.random._manual_program_seed(SEED)
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
        # train and save base model
        self.train_and_save_orig_model()

    def train_and_save_orig_model(self):
        layer = LinearNet(self.linear_size, self.linear_size)
        example_inputs, layer, _ = train(layer, self.linear_size, 1)
        fluid.dygraph.jit.save(
            layer=layer, model_path=self.model_path, input_spec=example_inputs)

    def test_load_model_retransform_inference(self):
        multi_loaded_layer = MultiLoadingLinearNet(self.linear_size,
                                                   self.model_path)
        state_dict = multi_loaded_layer.state_dict()
        name_set = set()
        for _, var in state_dict.items():
            self.assertTrue(var.name not in name_set)
            name_set.add(var.name)


448 449 450 451 452 453 454
class TestJitPruneModelAndLoad(unittest.TestCase):
    def setUp(self):
        self.linear_size = 4
        self.model_path = "model.jit_prune_model_and_load"
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
L
Leo Chen 已提交
455 456
        paddle.manual_seed(SEED)
        paddle.framework.random._manual_program_seed(SEED)
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505

    def train_and_save(self):
        train_layer = LinearNetReturnHidden(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            hidden, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

        configs = fluid.dygraph.jit.SaveLoadConfig()
        configs.output_spec = [hidden]
        fluid.dygraph.jit.save(
            layer=train_layer,
            model_path=self.model_path,
            input_spec=[x],
            configs=configs)

        return train_layer

    def test_load_pruned_model(self):
        train_layer = self.train_and_save()
        train_layer.eval()

        infer_layer = fluid.dygraph.jit.load(self.model_path)

        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))

    def test_load_var_not_in_extra_var_info(self):
        self.train_and_save()

        # chage extra var info
        var_info_path = os.path.join(self.model_path, EXTRA_VAR_INFO_FILENAME)
        with open(var_info_path, 'rb') as f:
            extra_var_info = pickle.load(f)
            extra_var_info.clear()
        with open(var_info_path, 'wb') as f:
            pickle.dump(extra_var_info, f, protocol=2)

        with self.assertRaises(RuntimeError):
            fluid.dygraph.jit.load(self.model_path)


506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
class TestJitSaveMultiCases(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
        paddle.manual_seed(SEED)
        paddle.framework.random._manual_program_seed(SEED)

    def verify_inference_correctness(self, layer, model_path, with_label=False):
        layer.eval()
        loaded_layer = paddle.jit.load(model_path)
        loaded_layer.eval()
        # inference & compare
        x = paddle.to_variable(np.random.random((1, 784)).astype('float32'))
        if with_label:
            y = paddle.to_variable(np.random.random((1, 1)).astype('int64'))
            pred, _ = layer(x, y)
            pred = pred.numpy()
        else:
            pred = layer(x).numpy()
        loaded_pred = loaded_layer(x).numpy()
        self.assertTrue(
            np.array_equal(pred, loaded_pred),
            msg="Result diff when load and inference:\nlayer result:\n{}\n" \
                "loaded layer result:\n{}".format(pred, loaded_pred))

    def test_no_prune_to_static_after_train(self):
        layer = LinearNet(784, 1)

        train(layer)

        model_path = "test_no_prune_to_static_after_train"
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_to_static_no_train(self):
        layer = LinearNetWithInputSpec(784, 1)

        model_path = "test_no_prune_to_static_no_train"
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train(self):
        layer = LinearNetNotDeclarative(784, 1)

        train(layer)

        model_path = "test_no_prune_no_to_static_after_train"
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train_with_examples(self):
        layer = LinearNetNotDeclarative(784, 1)

        example_inputs, _, _ = train(layer)

        model_path = "test_no_prune_no_to_static_after_train_with_examples"
        fluid.dygraph.jit.save(
            layer=layer, model_path=model_path, input_spec=example_inputs)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_no_train(self):
        layer = LinearNetNotDeclarative(784, 1)

        model_path = "test_no_prune_no_to_static_no_train"
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])

        self.verify_inference_correctness(layer, model_path)

    def test_prune_to_static_after_train(self):
        layer = LinerNetWithLabel(784, 1)

        out = train_with_label(layer)

        model_path = "test_prune_to_static_after_train"
        configs = paddle.SaveLoadConfig()
        configs.output_spec = [out]
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name="image")
            ],
            configs=configs)

        self.verify_inference_correctness(layer, model_path, True)

    def test_prune_to_static_no_train(self):
        layer = LinerNetWithLabel(784, 1)

        model_path = "test_prune_to_static_no_train"
        configs = paddle.SaveLoadConfig()
        # TODO: no train, cannot get output_spec var here
        # now only can use index
        configs.output_spec = layer.forward.outputs[:1]
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name="image")
            ],
            configs=configs)

        self.verify_inference_correctness(layer, model_path, True)

    def test_no_prune_input_spec_name_warning(self):
        layer = LinearNetWithInputSpec(784, 1)

        train(layer)

        model_path = "test_no_prune_input_spec_name_warning"
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name='feed_input')
            ])

        self.verify_inference_correctness(layer, model_path)

    def test_not_prune_output_spec_name_warning(self):
        layer = LinearNet(784, 1)

        train(layer)

        model_path = "test_not_prune_output_spec_name_warning"
        configs = paddle.SaveLoadConfig()
        out = paddle.to_variable(np.random.random((1, 1)).astype('float'))
        configs.output_spec = [out]
        paddle.jit.save(layer, model_path, configs=configs)

        self.verify_inference_correctness(layer, model_path)

    def test_prune_input_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

        model_path = "test_prune_input_spec_name_error"
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[InputSpec(
                    shape=[None, 784], dtype='float32')])
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[
                    InputSpec(
                        shape=[None, 784], dtype='float32', name='feed_input')
                ])

    def test_prune_output_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

        train_with_label(layer)

        model_path = "test_prune_to_static_after_train"
        configs = paddle.SaveLoadConfig()
        out = paddle.to_variable(np.random.random((1, 1)).astype('float'))
        configs.output_spec = [out]
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[
                    InputSpec(
                        shape=[None, 784], dtype='float32', name="image")
                ],
                configs=configs)


698 699
if __name__ == '__main__':
    unittest.main()