recurrent_op.h 5.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include "paddle/framework/operator.h"
Y
Yan Chunwei 已提交
18
#include "paddle/operators/net_op.h"
19
#include "paddle/operators/rnn/recurrent_op_utils.h"
Y
Yan Chunwei 已提交
20 21 22 23 24

namespace paddle {
namespace operators {

// The sequence format in RecurrentOp is Tensor<seq_len, batch_size, dim> now.
S
superjom 已提交
25
// TODO(Superjom)
Y
Yan Chunwei 已提交
26 27 28 29 30 31 32
// 1. No-padding computing for sequences with indifinite length in one batch.
// 2. Hierarchical RNN for sequence with sub-sequence.
// 3. Internal Memory.
// 4. More Complex RNN architecture, such as Gated Feedback RNN.
//    Refer to: https://arxiv.org/pdf/1502.02367.pdf

class RecurrentAlgorithm {
33
 public:
Y
Yi Wang 已提交
34 35
  void Run(const framework::Scope& scope,
           const platform::DeviceContext& dev_ctx) const;
Y
Yan Chunwei 已提交
36

Y
Yu Yang 已提交
37 38
  void Init(rnn::Argument* arg,
            std::unique_ptr<framework::OperatorBase>* stepnet) {
Y
Yan Chunwei 已提交
39 40 41 42
    PADDLE_ENFORCE_NOT_NULL(stepnet, "stepnet should be set before.");
    arg_ = arg;
    stepnet_ = stepnet;
  }
Y
Yan Chunwei 已提交
43

44
 protected:
Y
Yan Chunwei 已提交
45 46 47 48 49 50
  /*
   * The step scopes will be stored in the father scope as a variable.
   *
   * NOTE the scopes are reused in both the forward and backward, so just
   * create once and expand its size if more steps need.
   */
Q
qiaolongfei 已提交
51
  void CreateScopes(const framework::Scope& scope, size_t seq_len) const;
Y
Yan Chunwei 已提交
52

Y
Yi Wang 已提交
53 54 55 56
  const std::vector<framework::Scope*>& GetStepScopes(
      const framework::Scope& scope) const {
    return *scope.FindVar(arg_->step_scopes)
                ->GetMutable<std::vector<framework::Scope*>>();
Y
Yan Chunwei 已提交
57 58
  }

Q
qiaolongfei 已提交
59
  void InitMemories(framework::Scope* step_scopes) const;
Y
Yan Chunwei 已提交
60

61
 private:
Y
Yu Yang 已提交
62
  std::unique_ptr<framework::OperatorBase>* stepnet_;
Y
Yan Chunwei 已提交
63
  rnn::Argument* arg_;
Y
Yan Chunwei 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76
};

class RecurrentGradientAlgorithm {
  /**
   * RNN's backward alogorithm.
   *
   * To accelerate the development of RecurrentGradientOp, we decouple RNN's
   * algorithm and `OperatorBase`'s implementation, the former contains the core
   * implementation of a RNN, and will keep stable even if the framework changes
   * a
   * lot, and the latter is a wrapper acts like an dapter for it to make RNN an
   * operator.
   */
77
 public:
Y
Yu Yang 已提交
78 79
  void Init(rnn::Argument* arg,
            std::unique_ptr<framework::OperatorBase>* stepnet) {
Y
Yan Chunwei 已提交
80 81 82 83
    PADDLE_ENFORCE_NOT_NULL(stepnet, "stepnet should be set before.");
    arg_ = std::move(arg);
    stepnet_ = stepnet;
  }
Y
Yan Chunwei 已提交
84

Y
Yi Wang 已提交
85 86
  void Run(const framework::Scope& scope,
           const platform::DeviceContext& dev_ctx) const;
Y
Yan Chunwei 已提交
87

Q
qiaolongfei 已提交
88
  void LinkBootMemoryGradients(framework::Scope* step_scopes) const;
Q
qiaolongfei 已提交
89

90
 protected:
Y
Yi Wang 已提交
91 92 93 94
  inline const std::vector<framework::Scope*>& GetStepScopes(
      const framework::Scope& scope) const {
    return *scope.FindVar(arg_->step_scopes)
                ->GetMutable<std::vector<framework::Scope*>>();
Y
Yan Chunwei 已提交
95 96
  }

97
 private:
Y
Yan Chunwei 已提交
98
  rnn::Argument* arg_;
Y
Yu Yang 已提交
99
  std::unique_ptr<framework::OperatorBase>* stepnet_;
Y
Yan Chunwei 已提交
100 101
};

Y
Yu Yang 已提交
102
class RecurrentOp : public framework::OperatorBase {
103
 public:
Y
Yu Yang 已提交
104 105 106
  RecurrentOp(const std::string& type, const framework::VariableNameMap& inputs,
              const framework::VariableNameMap& outputs,
              const framework::AttributeMap& attrs);
Y
Yu Yang 已提交
107 108 109 110 111 112 113

  RecurrentOp(const RecurrentOp& o)
      : framework::OperatorBase(
            static_cast<const framework::OperatorBase&>(o)) {
    // TODO(yuyang18): Implement copy ctor well.
    PADDLE_THROW("Not implemented");
  }
Y
Yan Chunwei 已提交
114

Y
Yi Wang 已提交
115
  void Run(const framework::Scope& scope,
L
liaogang 已提交
116
           const platform::DeviceContext& dev_ctx) const override {
Y
Yan Chunwei 已提交
117 118 119
    alg_.Run(scope, dev_ctx);
  }

Y
Yu Yang 已提交
120 121 122
  void set_stepnet(std::unique_ptr<OperatorBase> net) {
    stepnet_ = std::move(net);
  }
Q
qiaolongfei 已提交
123

Y
Yu Yang 已提交
124
  const OperatorBase& stepnet() const { return *stepnet_; }
Y
Yan Chunwei 已提交
125

Y
Yan Chunwei 已提交
126 127
  static const rnn::ArgumentName kArgName;

128
 private:
Y
Yan Chunwei 已提交
129
  RecurrentAlgorithm alg_;
Y
Yan Chunwei 已提交
130
  rnn::Argument arg_;
Y
Yu Yang 已提交
131
  std::unique_ptr<OperatorBase> stepnet_;
Y
Yan Chunwei 已提交
132 133
};

Y
Yu Yang 已提交
134
class RecurrentGradientOp : public framework::OperatorBase {
135
 public:
Y
Yu Yang 已提交
136 137 138
  RecurrentGradientOp(const std::string& type,
                      const framework::VariableNameMap& inputs,
                      const framework::VariableNameMap& outputs,
Y
Yu Yang 已提交
139
                      const framework::AttributeMap& attrs);
Y
Yan Chunwei 已提交
140

Y
Yu Yang 已提交
141 142 143 144 145 146 147
  RecurrentGradientOp(const RecurrentGradientOp& o)
      : framework::OperatorBase(
            static_cast<const framework::OperatorBase&>(o)) {
    // TODO(yuyang18): Implement Copy ctor.
    PADDLE_THROW("Not Implemented");
  }

Y
Yi Wang 已提交
148
  void Run(const framework::Scope& scope,
L
liaogang 已提交
149
           const platform::DeviceContext& dev_ctx) const override {
Y
Yan Chunwei 已提交
150 151 152 153 154
    alg_.Run(scope, dev_ctx);
  }

  static const rnn::ArgumentName kArgName;

S
superjom 已提交
155 156 157
  /*
   * set a stepnet that is created according to a RecurrentOp's stepnet.
   */
Y
Yu Yang 已提交
158 159 160 161
  void set_stepnet(std::unique_ptr<OperatorBase> net) {
    stepnet_ = std::move(net);
  }
  const OperatorBase& stepnet() const { return *stepnet_; }
Y
Yan Chunwei 已提交
162

163
 private:
Y
Yan Chunwei 已提交
164
  RecurrentGradientAlgorithm alg_;
Y
Yu Yang 已提交
165
  std::unique_ptr<OperatorBase> stepnet_;
Y
Yan Chunwei 已提交
166
  rnn::Argument arg_;
Y
Yan Chunwei 已提交
167 168 169 170
};

}  // namespace operators
}  // namespace paddle