recurrent_op.h 6.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include "paddle/framework/operator.h"

namespace paddle {
namespace operators {

namespace rnn {

/**
 * Memory of a RNN (same as the role of `Momory` in PaddlePaddle).
 *
 * Memory attributes cached by this op, dims will be infered from
 * boot memories in father scope. Other attributes are copied from Op's proto
 * attributes.
 */
struct MemoryAttr {
  // name of current state variable
  std::string var;
  // name of previous step's state variable
  std::string pre_var;
  // name of the variables to init this memory (same role of `boot_layer` in
  // PaddlePaddle), which is store in father's scope.
  std::string boot_var;
};

struct Link {
  // input or output links name.
  std::string internal;
  // alias to avoid duplicate keys in scopes.
  std::string external;
};

struct Argument {
  std::string step_net;
  std::string step_scopes;
  std::vector<Link> inlinks;
  std::vector<Link> outlinks;
  std::vector<rnn::MemoryAttr> memories;
};

struct ArgumentName {
  std::string step_net;
  std::string step_scopes;
  std::string inlinks;
  std::string outlinks;
  std::string inlink_alias;   // the alias of inlinks in step net.
  std::string outlink_alias;  // the alias of outlinks in step net.
  std::string memories;       // the memory name
  std::string pre_memories;   // the previous memory name
  std::string boot_memories;  // the boot memory name
};

/**
 * Prepare inputs for each step net.
 */
Y
Yi Wang 已提交
71
void SegmentInputs(const std::vector<framework::Scope*>& step_scopes,
Y
Yan Chunwei 已提交
72
                   const std::vector<Link>& inlinks,
73
                   const size_t seq_len,
D
dangqingqing 已提交
74
                   bool infer_shape_mode);
Y
Yan Chunwei 已提交
75 76 77 78

/**
 * Process outputs of step nets and merge to variables.
 */
Y
Yi Wang 已提交
79
void ConcatOutputs(const std::vector<framework::Scope*>& step_scopes,
Y
Yan Chunwei 已提交
80
                   const std::vector<Link>& outlinks,
81
                   const size_t seq_len,
D
dangqingqing 已提交
82
                   bool infer_shape_mode);
Y
Yan Chunwei 已提交
83

Y
Yi Wang 已提交
84
void LinkMemories(const std::vector<framework::Scope*>& step_scopes,
Y
Yan Chunwei 已提交
85
                  const std::vector<MemoryAttr>& memories,
86 87
                  const size_t step_id,
                  const int offset,
D
dangqingqing 已提交
88
                  bool infer_shape_mode);
Y
Yan Chunwei 已提交
89 90 91 92 93 94

void InitArgument(const ArgumentName& name, Argument* arg);

};  // namespace rnn

// The sequence format in RecurrentOp is Tensor<seq_len, batch_size, dim> now.
L
liaogang 已提交
95
// TODO(Yan Chunwei):
Y
Yan Chunwei 已提交
96 97 98 99 100 101 102 103
// 1. No-padding computing for sequences with indifinite length in one batch.
// 2. Hierarchical RNN for sequence with sub-sequence.
// 3. Internal Memory.
// 4. More Complex RNN architecture, such as Gated Feedback RNN.
//    Refer to: https://arxiv.org/pdf/1502.02367.pdf

class RecurrentAlgorithm {
public:
Y
Yi Wang 已提交
104 105
  void Run(const framework::Scope& scope,
           const platform::DeviceContext& dev_ctx) const;
Y
Yan Chunwei 已提交
106 107 108 109 110 111

  void Init(std::unique_ptr<rnn::Argument> arg) { arg_ = std::move(arg); }

  /**
   * InferShape must be called before Run.
   */
Y
Yi Wang 已提交
112
  void InferShape(const framework::Scope& scope) const;
Y
Yan Chunwei 已提交
113 114 115 116 117 118 119 120

protected:
  /*
   * The step scopes will be stored in the father scope as a variable.
   *
   * NOTE the scopes are reused in both the forward and backward, so just
   * create once and expand its size if more steps need.
   */
Y
Yi Wang 已提交
121
  void CreateScopes(const framework::Scope& scope) const;
Y
Yan Chunwei 已提交
122

Y
Yi Wang 已提交
123 124 125 126
  const std::vector<framework::Scope*>& GetStepScopes(
      const framework::Scope& scope) const {
    return *scope.FindVar(arg_->step_scopes)
                ->GetMutable<std::vector<framework::Scope*>>();
Y
Yan Chunwei 已提交
127 128
  }

Y
Yi Wang 已提交
129
  void InitMemories(framework::Scope* step_scopes, bool infer_shape_mode) const;
Y
Yan Chunwei 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

private:
  std::unique_ptr<rnn::Argument> arg_;
  mutable size_t seq_len_;
};

class RecurrentGradientAlgorithm {
  /**
   * RNN's backward alogorithm.
   *
   * To accelerate the development of RecurrentGradientOp, we decouple RNN's
   * algorithm and `OperatorBase`'s implementation, the former contains the core
   * implementation of a RNN, and will keep stable even if the framework changes
   * a
   * lot, and the latter is a wrapper acts like an dapter for it to make RNN an
   * operator.
   */
public:
  void Init(std::unique_ptr<rnn::Argument> arg) { arg_ = std::move(arg); }

Y
Yi Wang 已提交
150 151
  void Run(const framework::Scope& scope,
           const platform::DeviceContext& dev_ctx) const;
Y
Yan Chunwei 已提交
152

Y
Yi Wang 已提交
153 154
  void LinkBootMemoryGradients(framework::Scope* step_scopes,
                               bool infer_shape_mode) const;
Y
Yan Chunwei 已提交
155 156 157 158

  /**
   * InferShape must be called before Run.
   */
Y
Yi Wang 已提交
159
  void InferShape(const framework::Scope& scope) const;
Y
Yan Chunwei 已提交
160 161

protected:
Y
Yi Wang 已提交
162 163 164 165
  inline const std::vector<framework::Scope*>& GetStepScopes(
      const framework::Scope& scope) const {
    return *scope.FindVar(arg_->step_scopes)
                ->GetMutable<std::vector<framework::Scope*>>();
Y
Yan Chunwei 已提交
166 167 168 169 170 171 172
  }

private:
  std::unique_ptr<rnn::Argument> arg_;
  mutable size_t seq_len_;
};

Y
Yi Wang 已提交
173
class RecurrentOp final : public framework::OperatorBase {
Y
Yan Chunwei 已提交
174 175 176 177 178 179
public:
  void Init() override;

  /**
   * InferShape must be called before Run.
   */
Y
Yi Wang 已提交
180 181 182
  void InferShape(const framework::Scope& scope) const override {
    alg_.InferShape(scope);
  }
Y
Yan Chunwei 已提交
183

Y
Yi Wang 已提交
184
  void Run(const framework::Scope& scope,
L
liaogang 已提交
185
           const platform::DeviceContext& dev_ctx) const override {
Y
Yan Chunwei 已提交
186 187 188 189 190 191 192 193 194
    alg_.Run(scope, dev_ctx);
  }

  static const rnn::ArgumentName kArgName;

private:
  RecurrentAlgorithm alg_;
};

Y
Yi Wang 已提交
195
class RecurrentGradientOp final : public framework::OperatorBase {
Y
Yan Chunwei 已提交
196 197 198 199 200 201
public:
  void Init() override;

  /**
   * InferShape must be called before Run.
   */
Y
Yi Wang 已提交
202 203 204
  void InferShape(const framework::Scope& scope) const override {
    alg_.InferShape(scope);
  }
Y
Yan Chunwei 已提交
205

Y
Yi Wang 已提交
206
  void Run(const framework::Scope& scope,
L
liaogang 已提交
207
           const platform::DeviceContext& dev_ctx) const override {
Y
Yan Chunwei 已提交
208 209 210 211 212 213 214 215 216 217 218
    alg_.Run(scope, dev_ctx);
  }

  static const rnn::ArgumentName kArgName;

private:
  RecurrentGradientAlgorithm alg_;
};

}  // namespace operators
}  // namespace paddle