executor.py 38.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
Zeng Jinle 已提交
17
import logging
18 19
import os
import multiprocessing
C
chengduo 已提交
20
import sys
21
import warnings
D
dzhwinter 已提交
22
import numpy as np
S
rename  
sneaxiy 已提交
23
from .wrapped_decorator import signature_safe_contextmanager
24
import six
25
from .framework import Program, default_main_program, Variable
26
from . import core
27 28
from . import compiler
from .. import compat as cpt
29
from .trainer_factory import TrainerFactory
30

T
Tink_Y 已提交
31
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
32

Y
Yu Yang 已提交
33
g_scope = core.Scope()
F
flame 已提交
34 35
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
36

Y
Yu Yang 已提交
37

Y
Yang Yu 已提交
38
def global_scope():
Y
yuyang18 已提交
39 40 41 42
    """
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

43 44 45 46 47 48 49 50 51
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          numpy.array(fluid.global_scope().find_var("data").get_tensor())

Y
yuyang18 已提交
52 53 54
    Returns:
        Scope: The global/default scope instance.
    """
Y
Yang Yu 已提交
55 56 57
    return g_scope


58
def _switch_scope(scope):
Y
Yang Yu 已提交
59 60 61 62 63 64
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
65
@signature_safe_contextmanager
Y
Yang Yu 已提交
66
def scope_guard(scope):
Y
yuyang18 已提交
67 68 69 70
    """
    Change the global/default scope instance by Python `with` statement. All
    variable in runtime will assigned to the new scope.

L
lujun 已提交
71 72 73
    Args:
        scope: The new global/default scope.

Y
yuyang18 已提交
74
    Examples:
75 76
        .. code-block:: python

77
            import paddle.fluid as fluid
L
lujun 已提交
78
            import numpy
Y
yuyang18 已提交
79

L
lujun 已提交
80 81 82 83
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                 fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
84
    """
L
lujun 已提交
85

86
    ex = _switch_scope(scope)
Y
Yang Yu 已提交
87
    yield
88
    _switch_scope(ex)
Y
Yang Yu 已提交
89 90


D
dzhwinter 已提交
91
def as_numpy(tensor):
92 93 94
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
95

96
    Examples:
97 98 99 100 101 102 103 104 105 106
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
107 108 109 110 111 112 113

    Args:
       tensor(Variable): a instance of Tensor

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
114 115
    if isinstance(tensor, core.LoDTensorArray):
        return [as_numpy(t) for t in tensor]
D
dzhwinter 已提交
116 117 118 119
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
120
    if len(lod) > 0:
D
dzhwinter 已提交
121
        raise RuntimeError("Some of your fetched tensors hold LoD information. \
122 123 124
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
Q
qingqing01 已提交
125 126 127 128
    if tensor._is_initialized():
        return np.array(tensor)
    else:
        return None
D
dzhwinter 已提交
129 130


131 132 133 134 135 136 137 138 139 140 141 142
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
143 144
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
145 146 147
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
148
        A boolean value that indicates whether a block has feed operators
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
                raise Exception("'feed_targets' does not have {} variable".
                                format(feed_target_name))
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


def has_fetch_operators(block, fetch_targets, fetch_holder_name):
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
171

172 173 174 175 176 177 178 179 180
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
181 182 183
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
184

X
xuwei06 已提交
185 186 187
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    """

    fetch_count = 0
    for op in block.ops:
        if op.desc.type() == 'fetch':
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
                raise Exception("'fetch_targets' does not have {} variable".
                                format(fetch_target_name))
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


W
Wu Yi 已提交
209
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
210
    """
C
chengduoZH 已提交
211 212 213
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
214
    Args:
215 216 217 218
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
219 220 221 222
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
223 224 225 226 227 228
    Returns:
       LodTensor|numpy.ndarray
    """
    assert isinstance(name, str)
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
229
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
230

Y
Yibing Liu 已提交
231
    var = scope.find_var(name)
232 233 234 235
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
236 237 238 239 240 241
    tensor = var.get_tensor()
    if return_numpy:
        tensor = as_numpy(tensor)
    return tensor


X
polish  
Xin Pan 已提交
242 243 244 245 246 247 248 249 250
def _to_name_str(var):
    if isinstance(var, Variable):
        return var.desc.name()
    elif isinstance(var, str):
        return var
    elif isinstance(var, six.string_types):
        return str(var)
    else:
        raise TypeError(str(var) + " should be Variable or str")
Q
qiaolongfei 已提交
251 252


253 254 255 256
def _get_strong_program_cache_key(program, feed, fetch_list):
    return str(id(program)) + _get_program_cache_key(feed, fetch_list)


X
polish  
Xin Pan 已提交
257 258 259
def _get_program_cache_key(feed, fetch_list):
    feed_var_names = list(feed.keys())
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
260 261 262 263

    return str(feed_var_names + fetch_var_names)


W
Wu Yi 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
def _as_lodtensor(data, place):
    """
        Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
        For higher dimensional sequence data, please use LoDTensor directly.

        Examples:
            >>> import paddle.fluid as fluid
            >>> place = fluid.CPUPlace()
            >>> exe = fluid.executor(place)
            >>> data = np.array(size=(100, 200, 300))
            >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
            >>>     ...

        Args:
            data(numpy.ndarray): a instance of array

        Returns:
            LoDTensor
        """
    if isinstance(data, list):
        raise RuntimeError("Some of your feed data hold LoD information. \
                They can not be completely cast from a list of Python \
                ndarray to LoDTensor. Please convert data to LoDTensor \
                directly before feeding the data.\
                ")
    # single tensor case
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


Y
Yu Yang 已提交
295
class Executor(object):
296
    """
297 298 299 300 301 302 303 304 305 306 307
    An Executor in Python, supports single/multiple-GPU running,
    and single/multiple-CPU running. Python executor takes a program,
    adds feed operators and fetch operators to this program according
    to feed map and fetch_list. Feed map provides input data for the
    program. fetch_list provides the variables(or names) that user wants
    to get after program runs. Note: the executor will run all operators
    in the program but not only the operators dependent by the fetch_list.
    It stores the global variables into the global scope, and creates a
    local scope for the temporary variables. The contents in local scope
    may be discarded after every minibatch forward/backward finished.
    But the global scope variables will be persistent through different runs.
S
Fix doc  
sneaxiy 已提交
308

309
    Examples:
S
Fix doc  
sneaxiy 已提交
310 311
        .. code-block:: python

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
          import paddle.fluid as fluid
          import paddle.fluid.compiler as compiler
          import numpy
          import os

          use_cuda = True
          place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

          # Run the startup program once and only once.
          # Not need to optimize/compile the startup program.
          startup_program.random_seed=1
          exe.run(startup_program)

          # Run the main program directly without compile.
          x = numpy.random.random(size=(10, 1)).astype('float32')
          loss_data, = exe.run(train_program,
                               feed={"X": x},
                               fetch_list=[loss.name])

          # Or, compiled the program and run. See `CompiledProgram`
          # for more detail.
          # NOTE: If you use CPU to run the program, you need
          # to specify the CPU_NUM, otherwise, fluid will use
          # all the number of the logic core as the CPU_NUM,
          # in that case, the batch size of the input should be
          # greater than CPU_NUM, if not, the process will be
          # failed by an exception.
          if not use_cuda:
              os.environ['CPU_NUM'] = str(2)

          compiled_prog = compiler.CompiledProgram(
              train_program).with_data_parallel(
              loss_name=loss.name)
          loss_data, = exe.run(compiled_prog,
                               feed={"X": x},
                               fetch_list=[loss.name])
X
add doc  
Xin Pan 已提交
357

358
    Args:
359 360
        place(fluid.CPUPlace|fluid.CUDAPlace(n)): indicate the executor run on which device.

361 362
    """

D
dzhwinter 已提交
363 364
    def __init__(self, place):
        self.place = place
Q
qiaolongfei 已提交
365
        self.program_caches = dict()
366
        self.ctx_caches = dict()
367 368
        self.scope_caches = dict()
        self.var_caches = dict()
369 370 371
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
372
        self._closed = False
D
dzhwinter 已提交
373

374 375 376 377 378 379
    def _get_var_cache(self, program_cache_key):
        return self.var_caches.get(program_cache_key, None)

    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

380 381 382
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
383 384 385 386 387 388
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

389 390 391
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

392 393 394 395 396 397
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

    def _add_var_cache(self, var_cache_key, var):
        self.var_caches[var_cache_key] = var

Q
Qiao Longfei 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
    def _add_feed_fetch_ops(self, program, feed, fetch_list, feed_var_name,
                            fetch_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                out = global_block.var(name)
W
Wu Yi 已提交
424
                global_block._prepend_op(
Q
Qiao Longfei 已提交
425 426 427 428 429 430 431 432
                    type='feed',
                    inputs={'X': [feed_var]},
                    outputs={'Out': [out]},
                    attrs={'col': i})

        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name):
            for i, var in enumerate(fetch_list):
M
minqiyang 已提交
433 434 435
                assert isinstance(var, Variable) or isinstance(
                    var, six.string_types), (
                        "Wrong type for fetch_list[%s]: %s" % (i, type(var)))
Q
Qiao Longfei 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
                global_block.append_op(
                    type='fetch',
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i})

        return tmp_program

    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
        for op in program.global_block().ops:
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
                if not isinstance(cur_feed, core.LoDTensor):
W
Wu Yi 已提交
451
                    cur_feed = _as_lodtensor(cur_feed, self.place)
Q
Qiao Longfei 已提交
452 453 454 455 456 457 458 459
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
M
minqiyang 已提交
460
            for i in six.moves.range(len(fetch_list))
Q
Qiao Longfei 已提交
461 462 463
        ]
        return outs

S
Fix doc  
sneaxiy 已提交
464 465 466 467 468 469
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
470 471 472 473
    def close(self):
        """
        Close this executor.

X
fix  
Xin Pan 已提交
474
        You can no longer use this executor after calling this method.
475 476 477 478 479 480 481 482 483 484 485 486
        For the distributed training, this method would free the resource
        on PServers related to the current Trainer.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              cpu = fluid.CPUPlace()
              exe = fluid.Executor(cpu)
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
487
        """
488 489
        if not self._closed:
            self._default_executor.close()
Y
Yancey1989 已提交
490
            self._closed = True
Y
Yancey1989 已提交
491

X
fix  
Xin Pan 已提交
492
    def _run_parallel(self, program, scope, feed, fetch_list, fetch_var_name,
X
polish  
Xin Pan 已提交
493
                      return_numpy):
494
        exe = program._executor
495 496 497 498 499 500 501 502 503 504 505
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
                if not isinstance(feed_tensor, core.LoDTensor):
                    feed_tensor = core.LoDTensor()
                    # always set to CPU place, since the tensor need to be splitted
                    # it is fast in CPU
                    feed_tensor.set(feed[feed_name], core.CPUPlace())
                feed_tensor_dict[feed_name] = feed_tensor

506
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
507
        elif isinstance(feed, list) or isinstance(feed, tuple):
X
fix  
Xin Pan 已提交
508
            if len(feed) != len(program._places):
509 510 511 512 513 514 515 516 517 518 519 520 521 522
                raise ValueError(
                    "Feed a list of tensor, the list should be the same size as places"
                )

            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
                    if not isinstance(tensor, core.LoDTensor):
                        tmp = core.LoDTensor()
X
fix  
Xin Pan 已提交
523
                        tmp.set(tensor, program._places[i])
524 525 526
                        tensor = tmp
                    res_dict[feed_name] = tensor
                res.append(res_dict)
527
            exe.feed_tensors_into_local_scopes(res)
528

X
polish  
Xin Pan 已提交
529
        fetch_var_names = list(map(_to_name_str, fetch_list))
530
        tensors = exe.run(fetch_var_names)._move_to_list()
531 532

        if return_numpy:
533 534 535
            return as_numpy(tensors)
        else:
            return tensors
536

Y
Yu Yang 已提交
537
    def run(self,
Y
Yu Yang 已提交
538
            program=None,
539 540
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
541
            feed_var_name='feed',
Y
Yu Yang 已提交
542
            fetch_var_name='fetch',
D
dzhwinter 已提交
543
            scope=None,
544 545
            return_numpy=True,
            use_program_cache=False):
546
        """
547 548 549 550
        Run program by this Executor. Feed data by feed map, fetch result by
        fetch_list. Python executor takes a program, add feed operators and
        fetch operators to this program according to feed map and fetch_list.
        Feed map provides input data for the program. fetch_list provides
551 552
        the variables(or names) that user want to get after program run.

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
        Note: the executor will run all operators in the program but not
        only the operators dependent by the fetch_list.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              import numpy

              # First create the Executor.
              place = fluid.CPUPlace() # fluid.CUDAPlace(0)
              exe = fluid.Executor(place)

              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              adam = fluid.optimizer.Adam()
              adam.minimize(loss)

              # Run the startup program once and only once.
              exe.run(fluid.default_startup_program())

              x = numpy.random.random(size=(10, 1)).astype('float32')
              outs = exe.run(feed={'X': x},
                             fetch_list=[loss.name])
Q
qiaolongfei 已提交
578

579
        Args:
X
add doc  
Xin Pan 已提交
580
            program(Program|CompiledProgram): the program that need to run,
X
fix  
Xin Pan 已提交
581
                if not provided, then default_main_program (not compiled) will be used.
X
add doc  
Xin Pan 已提交
582
            feed(dict): feed variable map, e.g. {"image": ImageData, "label": LabelData}
Z
Zeng Jinle 已提交
583 584 585 586 587 588 589 590
            fetch_list(list): a list of variable or variable names that user 
                wants to get, this method will return them according to this list.
            feed_var_name(str): the name for the input variable of 
                feed Operator.
            fetch_var_name(str): the name for the output variable of 
                fetch Operator.
            scope(Scope): the scope used to run this program, you can switch 
                it to different scope. default is global_scope
591
            return_numpy(bool): if convert the fetched tensor to numpy
Z
Zeng Jinle 已提交
592 593 594 595 596 597
            use_program_cache(bool): whether to use the cached program 
                settings across batches. Setting it be true would be faster 
                only when (1) the program is not compiled with data parallel, 
                and (2) program, feed variable names and fetch_list variable 
                names do not changed compared to the last step. 
                
598 599 600
        Returns:

            list(numpy.array): fetch result according to fetch_list.
601
        """
C
chengduo 已提交
602 603 604 605 606 607 608 609 610 611 612 613 614
        try:
            return self._run_impl(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache)
        except Exception as e:
            if not isinstance(e, core.EOFException):
                print("An exception was thrown!\n {}".format(str(e)))
615
            six.reraise(*sys.exc_info())
C
chengduo 已提交
616 617 618

    def _run_impl(self, program, feed, fetch_list, feed_var_name,
                  fetch_var_name, scope, return_numpy, use_program_cache):
Y
Yancey1989 已提交
619 620 621
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

622 623 624 625 626 627
        if program is None:
            program = default_main_program()
        if isinstance(program,Program) and \
                        len(program.global_block().ops) == 0:
            warnings.warn("The current program is empty.")

628 629
        if scope is None:
            scope = global_scope()
630 631 632 633 634 635 636 637 638

        if fetch_list is not None:
            if isinstance(fetch_list, Variable) or isinstance(fetch_list, str):
                fetch_list = [fetch_list]
            assert isinstance(fetch_list, tuple) or isinstance(fetch_list, list), \
                "Currently , The fetch_list type only should be list or tuple, \n"\
                "but the input type is {}. For more information please refer to \n"\
                "the executor.run(...).".format(type(fetch_list))
        else:
X
polish  
Xin Pan 已提交
639
            fetch_list = []
640

X
polish  
Xin Pan 已提交
641 642
        compiled = isinstance(program, compiler.CompiledProgram)
        # For backward compatibility, run directly.
643
        if not compiled:
C
chengduo 已提交
644
            return self._run_program(
645 646 647 648 649 650 651 652 653 654
                program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache)

        program._compile(scope, self.place)
C
chengduo 已提交
655 656 657
        if program._is_inference:
            return self._run_inference(program._executor, feed)
        else:
658
            return self._run_parallel(
X
fix  
Xin Pan 已提交
659
                program,
660 661 662
                scope=scope,
                feed=feed,
                fetch_list=fetch_list,
X
polish  
Xin Pan 已提交
663
                fetch_var_name=fetch_var_name,
664 665
                return_numpy=return_numpy)

C
chengduo 已提交
666
    def _run_program(self, program, feed, fetch_list, feed_var_name,
C
chengduo 已提交
667
                     fetch_var_name, scope, return_numpy, use_program_cache):
668

669 670
        if feed is None:
            feed = {}
S
sneaxiy 已提交
671 672 673 674
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
675
        if not isinstance(feed, dict):
D
dzhwinter 已提交
676 677 678
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))
Y
Yu Yang 已提交
679

680
        assert program is not None, "The program should not be Empty"
Y
Yu Yang 已提交
681
        if not isinstance(program, Program):
D
dzhwinter 已提交
682 683 684
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
                % (type(program)))
Y
Yu Yang 已提交
685

686
        if use_program_cache:
687
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
688
            cached_program = self._get_program_cache(cache_key)
689
            cached_ctx = self._get_ctx_cache(cache_key)
690 691
            cached_scope = self._get_scope_cache(cache_key)
            cached_var = self._get_var_cache(cache_key)
Q
Qiao Longfei 已提交
692 693 694 695 696 697 698 699
            if cached_program is None:
                cached_program = self._add_feed_fetch_ops(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
700
                fetch_list_str = list(map(_to_name_str, fetch_list))
701
                cached_ctx = self._default_executor.prepare_ctx_cache(
702 703 704 705 706 707 708 709 710
                    cached_program.desc, 0, fetch_list_str, False)
                cached_var = self._default_executor.create_variables(
                    cached_program.desc, scope, 0)
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
711
                self._add_ctx_cache(cache_key, cached_ctx)
712 713
                self._add_var_cache(cache_key, cached_var)
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
714
            program = cached_program
715
            ctx = cached_ctx
716 717
            scope = cached_scope
            var = cached_var
718
        else:
Q
Qiao Longfei 已提交
719 720 721 722 723 724 725 726
            program = self._add_feed_fetch_ops(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name)

        self._feed_data(program, feed, feed_var_name, scope)
727
        if not use_program_cache:
C
chengduo 已提交
728 729
            self._default_executor.run(program.desc, scope, 0, True, True,
                                       fetch_var_name)
730
        else:
C
chengduo 已提交
731 732
            self._default_executor.run_cached_prepared_ctx(ctx, scope, False,
                                                           False, False)
733 734
        arr = scope.find_var(fetch_var_name).get_lod_tensor_array()
        tensors = arr._move_to_list()
D
dzhwinter 已提交
735
        if return_numpy:
736 737 738
            return as_numpy(tensors)
        else:
            return tensors
F
flame 已提交
739

X
Xin Pan 已提交
740 741
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
742

743 744
    def _dump_debug_info(self, program=None, trainer=None):
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
H
hutuxian 已提交
745
            fout.write(str(trainer))
746 747 748 749
        if program._fleet_opt:
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
                % (filelist_length, filelist_length))
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
                % (filelist_length // pipeline_num, filelist_length))
            pipeline_opt["concurrency_list"][
                0] = filelist_length // pipeline_num
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

766 767 768 769 770 771 772 773 774
    def _prepare_trainer(self,
                         program=None,
                         dataset=None,
                         scope=None,
                         thread=0,
                         debug=False,
                         fetch_list=None,
                         fetch_info=None,
                         print_period=100):
D
dongdaxiang 已提交
775 776 777 778
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
779 780 781
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
782 783
        compiled = isinstance(program, compiler.CompiledProgram)
        if not compiled:
H
hutuxian 已提交
784 785 786 787 788 789
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
790
            trainer._set_program(program)
791
        else:
H
hutuxian 已提交
792 793 794 795 796 797
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(
                    program.program._fleet_opt)
798
            trainer._set_program(program.program)
H
hutuxian 已提交
799 800

        # The following thread_num-determined logic will be deprecated
801
        if thread <= 0:
D
dongdaxiang 已提交
802 803
            if dataset.thread_num <= 0:
                raise RuntimeError(
804 805
                    "You should set thread num first, either in Dataset"
                    "or in Executor.train_from_dataset")
D
dongdaxiang 已提交
806
            else:
807
                trainer._set_thread(dataset.thread_num)
808
        else:
809
            trainer._set_thread(thread)
H
hutuxian 已提交
810

811 812
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
813
        return scope, trainer
814 815 816 817 818 819

    def infer_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
820 821 822 823
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
                           print_period=100):
824 825 826 827 828 829
        """
        The document of infer_from_dataset is almost the same as
        train_from_dataset, except that in distributed training,
        push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-thread
        very easily.
830

831 832 833 834 835
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
               if not provided, then default_main_program (not compiled) will be used.
            dataset(paddle.fluid.Dataset): dataset created outside this function,
               a user should provide a well-defined dataset before calling this function.
836
               Please check the document of Dataset if needed. default is None
837 838 839
            scope(Scope): the scope used to run this program, you can switch it to different scope
               for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. The actual number
840 841
               of thread will be min(Dataset.thread_num, thread) if thread > 0, default is 0
            debug(bool): whether a user wants to run infer_from_dataset, default is False
842
            fetch_list(Variable List): fetch variable list, each variable
843 844 845
                                       will be printed during training, default is None
            fetch_info(String List): print information for each variable, default is None
            print_period(int): the number of mini-batches for each print, default is 100
846

847 848 849 850
        Returns:
            None

        Examples:
851 852

            .. code-block:: python
853

854
                import paddle.fluid as fluid
855 856

                place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu
857
                exe = fluid.Executor(place)
858 859
                x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64")
                y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1)
860 861
                dataset = fluid.DatasetFactory().create_dataset()
                dataset.set_use_var([x, y])
862 863
                dataset.set_thread(1)
                filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
864 865 866 867
                dataset.set_filelist(filelist)
                exe.run(fluid.default_startup_program())
                exe.infer_from_dataset(program=fluid.default_main_program(),
                                       dataset=dataset)        
868

869
        """
870 871 872
        if dataset == None:
            raise RuntimeError("dataset is needed and should be initialized")

J
jiaqi 已提交
873
        dataset._prepare_to_run()
874
        scope, trainer = self._prepare_trainer(
875 876 877 878 879 880 881 882
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)
883
        trainer._set_infer(True)
884
        trainer._gen_trainer_desc()
885
        self._dump_debug_info(program=program, trainer=trainer)
886 887 888
        self._default_executor.run_from_dataset(program.desc, scope,
                                                dataset.dataset,
                                                trainer._desc())
J
jiaqi 已提交
889
        dataset._finish_to_run()
890
        return None
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926

    def train_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
                           print_period=100):
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
        
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
               if not provided, then default_main_program (not compiled) will be used.
            dataset(paddle.fluid.Dataset): dataset created outside this function,
               a user should provide a well-defined dataset before calling this function.
               Please check the document of Dataset if needed.
            scope(Scope): the scope used to run this program, you can switch it to different scope
               for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. The actual number
               of thread will be min(Dataset.thread_num, thread)
            debug(bool): whether a user wants to run train_from_dataset 
            fetch_list(Variable List): fetch variable list, each variable
                                       will be printed during training
            fetch_info(String List): print information for each variable
            print_period(int): the number of mini-batches for each print
927 928 929

        Returns:
            None
930
        
931
        Examples:
932
        
933 934 935
            .. code-block:: python

              import paddle.fluid as fluid
936 937

              place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu
938
              exe = fluid.Executor(place)
939 940
              x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64")
              y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1)
941 942
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([x, y])
943 944
              dataset.set_thread(1)
              filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
945 946 947 948
              dataset.set_filelist(filelist)
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(program=fluid.default_main_program(),
                                     dataset=dataset)
949 950

        """
951 952 953
        if dataset == None:
            raise RuntimeError("dataset is need and should be initialized")

H
hutuxian 已提交
954
        if program._pipeline_opt:
955 956 957
            thread = self._adjust_pipeline_resource(program._pipeline_opt,
                                                    dataset, thread)

J
jiaqi 已提交
958
        dataset._prepare_to_run()
959
        scope, trainer = self._prepare_trainer(
960 961 962 963 964 965 966 967
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)
968
        trainer._gen_trainer_desc()
969
        self._dump_debug_info(program=program, trainer=trainer)
D
dongdaxiang 已提交
970 971 972
        self._default_executor.run_from_dataset(program.desc, scope,
                                                dataset.dataset,
                                                trainer._desc())
J
jiaqi 已提交
973
        dataset._finish_to_run()
974
        return None