clip.py 14.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
F
fengjiayi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
F
fengjiayi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
update  
fengjiayi 已提交
14

15 16
from __future__ import print_function

F
fengjiayi 已提交
17
import copy
18
import six
F
fengjiayi 已提交
19

Y
Yu Yang 已提交
20
import functools
21 22
from . import layers
from . import framework
F
fengjiayi 已提交
23
from . import core
Y
Yu Yang 已提交
24

F
fengjiayi 已提交
25
__all__ = [
26
    'ErrorClipByValue',
F
fengjiayi 已提交
27 28 29
    'GradientClipByValue',
    'GradientClipByNorm',
    'GradientClipByGlobalNorm',
F
fengjiayi 已提交
30
]
Y
Yu Yang 已提交
31 32


F
fengjiayi 已提交
33
class BaseErrorClipAttr(object):
F
fengjiayi 已提交
34 35 36
    def __str__(self):
        raise NotImplementedError()

Y
yuyang18 已提交
37
    def _append_clip_op(self, block, grad_name):
F
fengjiayi 已提交
38 39 40 41
        raise NotImplementedError()


class ErrorClipByValue(BaseErrorClipAttr):
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    """
    Clips tensor values to the range [min, max].

    Given a tensor t, this operation clips its value to min and max inplace.

    - Any values less than min are set to min.
    - Any values greater than max are set to max.

    Args:
        max (float): The maximum value to clip by.
        min (float, optional): The minimum value to clip by. if not set by user, \
        will be set to -max by framework.

    Examples:
        .. code-block:: python

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
            import paddle.fluid as fluid
            BATCH_SIZE = 128
            CLIP_MAX = 2e-6
            CLIP_MIN = -1e-6
            prog = fluid.framework.Program()
            with fluid.program_guard(main_program=prog):
                image = fluid.layers.data(name='x', shape=[784], dtype='float32')
                hidden1 = fluid.layers.fc(input=image, size=128, act='relu')
                hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
                predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
                label = fluid.layers.data(name='y', shape=[1], dtype='int64')
                cost = fluid.layers.cross_entropy(input=predict, label=label)
                avg_cost = fluid.layers.mean(cost)
            prog_clip = prog.clone()
            prog_clip.block(0).var(hidden1.name)._set_error_clip(
                fluid.clip.ErrorClipByValue(
                    max=CLIP_MAX, min=CLIP_MIN)
75 76
    """

F
fengjiayi 已提交
77 78 79 80 81 82 83 84 85
    def __init__(self, max, min=None):
        max = float(max)
        if min is None:
            min = -max
        else:
            min = float(min)
        self.max = max
        self.min = min

F
fengjiayi 已提交
86 87 88
    def __str__(self):
        return "ByValue, min=%f, max=%f" % (self.min, self.max)

Y
yuyang18 已提交
89
    def _append_clip_op(self, block, grad_name):
90 91 92 93
        clip_op_desc = block.desc.append_op()
        clip_op_desc.set_type("clip")
        clip_op_desc.set_input("X", [grad_name])
        clip_op_desc.set_output("Out", [grad_name])
W
Wu Yi 已提交
94 95
        clip_op_desc._set_attr("min", self.min)
        clip_op_desc._set_attr("max", self.max)
F
fengjiayi 已提交
96 97 98 99 100 101


def error_clip_callback(block, context):
    # the context is a grad_to_var map
    grad_to_var = context
    op_desc = block.desc.op(block.desc.op_size() - 1)
102
    for grad_n in [n for n in op_desc.output_arg_names() if n in grad_to_var]:
W
Wu Yi 已提交
103
        fwd_var = block._var_recursive(grad_to_var[grad_n])
F
fengjiayi 已提交
104
        error_clip = getattr(fwd_var, "error_clip", None)
F
fengjiayi 已提交
105 106 107 108 109
        if not (error_clip is None or isinstance(error_clip,
                                                 BaseErrorClipAttr)):
            raise TypeError(
                "Variable's error_clip should be an instance of BaseErrorClipAttr or None."
            )
F
fengjiayi 已提交
110
        if error_clip is not None:
Y
yuyang18 已提交
111
            error_clip._append_clip_op(block, grad_n)
F
fengjiayi 已提交
112 113


Y
Yu Yang 已提交
114
class BaseGradientClipAttr(object):
F
fengjiayi 已提交
115 116 117
    def __str__(self):
        raise NotImplementedError()

Y
yuyang18 已提交
118
    def _process_context(self, context, param, grad):
Y
Yu Yang 已提交
119 120
        raise NotImplementedError()

Y
yuyang18 已提交
121
    def _create_operators(self, param, grad):
Y
Yu Yang 已提交
122 123 124 125
        raise NotImplementedError()


class NullGradientClipAttr(BaseGradientClipAttr):
F
fengjiayi 已提交
126 127 128
    def __str__(self):
        return "Null"

Y
yuyang18 已提交
129
    def _process_context(self, context, param, grad):
Y
Yu Yang 已提交
130 131
        pass

Y
yuyang18 已提交
132
    def _create_operators(self, param, grad):
Y
Yu Yang 已提交
133 134 135 136
        return param, grad


class GradientClipByValue(BaseGradientClipAttr):
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    """
    Clips gradient values to the range [min, max].

    Given a tensor t, this operation clips its value to min and max inplace.

    - Any values less than min are set to min.
    - Any values greater than max are set to max.

    Args:
        max (float): The maximum value to clip by.
        min (float, optional): The minimum value to clip by. if not set by user, \
        will be set to -max by framework.

    Examples:
        .. code-block:: python

153
            import paddle.fluid as fluid
T
Tink_Y 已提交
154 155
            w_param_attrs = fluid.ParamAttr(name=None,
              initializer=fluid.initializer.UniformInitializer(low=-1.0, high=1.0, seed=0),
156
              learning_rate=1.0,
T
Tink_Y 已提交
157
              regularizer=fluid.regularizer.L1Decay(1.0),
158
              trainable=True,
159 160
              gradient_clip=fluid.clip.GradientClipByValue(-1.0, 1.0))
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
161 162 163
            y_predict = fluid.layers.fc(input=x, size=1, param_attr=w_param_attrs)
    """

Y
Yu Yang 已提交
164 165 166 167 168 169 170 171 172
    def __init__(self, max, min=None):
        max = float(max)
        if min is None:
            min = -max
        else:
            min = float(min)
        self.max = max
        self.min = min

F
fengjiayi 已提交
173 174 175
    def __str__(self):
        return "ByValue, min=%f, max=%f" % (self.min, self.max)

Y
yuyang18 已提交
176
    def _process_context(self, context, param, grad):
Y
Yu Yang 已提交
177 178
        pass

Y
yuyang18 已提交
179
    def _create_operators(self, param, grad):
Y
Yu Yang 已提交
180 181 182 183
        new_grad = layers.clip(x=grad, min=self.min, max=self.max)
        return param, new_grad


F
fengjiayi 已提交
184
class GradientClipByNorm(BaseGradientClipAttr):
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    """
    Clips tensor values to a maximum L2-norm.

    This operator limits the L2 norm of the input :math:`X` within :math:`max\_norm`.
    If the L2 norm of :math:`X` is less than or equal to :math:`max\_norm`, :math:`Out`
    will be the same as :math:`X`. If the L2 norm of :math:`X` is greater than
    :math:`max\_norm`, :math:`X` will be linearly scaled to make the L2 norm of
    :math:`Out` equal to :math:`max\_norm`, as shown in the following formula:

    .. math::

        Out = \\frac{max\_norm * X}{norm(X)},

    where :math:`norm(X)` represents the L2 norm of :math:`X`.

    Args:
        clip_norm (float): The maximum norm value

    Examples:
        .. code-block:: python

206 207
            import paddle.fluid as fluid
            w_param_attrs = fluid.ParamAttr(name=None,
T
Tink_Y 已提交
208
              initializer=fluid.initializer.UniformInitializer(low=-1.0, high=1.0, seed=0),
209
              learning_rate=1.0,
T
Tink_Y 已提交
210
              regularizer=fluid.regularizer.L1Decay(1.0),
211
              trainable=True,
212 213
              gradient_clip=fluid.clip.GradientClipByNorm(clip_norm=2.0))
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
214 215 216 217
            y_predict = fluid.layers.fc(input=x, size=1, param_attr=w_param_attrs)

    """

F
fengjiayi 已提交
218 219 220
    def __init__(self, clip_norm):
        self.clip_norm = clip_norm

F
fengjiayi 已提交
221 222 223
    def __str__(self):
        return "ByNorm, clip_norm=%f" % self.clip_norm

Y
yuyang18 已提交
224
    def _process_context(self, context, param, grad):
F
fengjiayi 已提交
225 226
        pass

Y
yuyang18 已提交
227
    def _create_operators(self, param, grad):
F
fengjiayi 已提交
228 229 230 231
        new_grad = layers.clip_by_norm(x=grad, max_norm=self.clip_norm)
        return param, new_grad


F
fengjiayi 已提交
232
class GradientClipByGlobalNorm(BaseGradientClipAttr):
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
    """
    Clips values of multiple tensors by the ratio of the sum of their norms.

    Given a list of tensors t_list, and a clipping ratio clip_norm, this
    operation returns a list of clipped tensors list_clipped and the global
    norm (global_norm) of all tensors in t_list.

    To perform the clipping, the values :math:`t\_list[i]` are set to:

    .. math::

        t\_list[i] = t\_list[i] * \\frac{clip\_norm}{\max(global\_norm, clip\_norm)}

    where:

    .. math::

        global\_norm = \sqrt{\sum_{i=0}^{N-1}(l2norm(t\_list[i]))^2}

    If :math:`clip\_norm > global\_norm` then the entries in t_list remain as they are,
    otherwise they're all shrunk by the global ratio.

    Args:
        clip_norm (float): The maximum norm value
        group_name (str, optional): The group name for this clip.

    Examples:
        .. code-block:: python

262 263 264 265 266 267 268 269 270 271 272 273 274 275
            import paddle.fluid as fluid
            prog = fluid.framework.Program()
            startup_program = fluid.framework.Program()
            with fluid.program_guard(
                    main_program=prog, startup_program=startup_program):
                image = fluid.layers.data(name='x', shape=[784], dtype='float32')
                label = fluid.layers.data(name='y', shape=[1], dtype='int64')
                hidden1 = fluid.layers.fc(input=image, size=128, act='relu')
                hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
                predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
                cost = fluid.layers.cross_entropy(input=predict, label=label)
                avg_cost = fluid.layers.mean(cost)
            prog_clip = prog.clone()
            avg_cost_clip = prog_clip.block(0).var(avg_cost.name)
276 277 278 279 280 281 282 283 284
            p_g_clip = fluid.backward.append_backward(loss=avg_cost_clip)

            with fluid.program_guard(main_program=prog_clip):
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByGlobalNorm(clip_norm=2.0))
                p_g_clip = fluid.clip.append_gradient_clip_ops(p_g_clip)

    """

F
update  
fengjiayi 已提交
285
    def __init__(self, clip_norm, group_name="default_group"):
286 287
        if not isinstance(group_name, six.string_types):
            raise TypeError("'group_name' must be a %s." % (six.string_types))
F
update  
fengjiayi 已提交
288 289 290

        self.clip_norm = clip_norm
        self.group_name = group_name
291

F
fengjiayi 已提交
292 293 294 295
    def __str__(self):
        return "ByGlobalNorm, group_name=%s, clip_norm=%f" % (self.group_name,
                                                              self.clip_norm)

Y
yuyang18 已提交
296
    def _process_context(self, context, param, grad):
F
update  
fengjiayi 已提交
297 298 299 300 301 302 303 304 305 306
        if self.group_name not in context:
            context[self.group_name] = []
            context[self.group_name + "_clip_value"] = self.clip_norm
            context[self.group_name + "_clip"] = layers.fill_constant(
                shape=[1], dtype="float32", value=self.clip_norm)
        else:
            if not self.clip_norm == context[self.group_name + "_clip_value"]:
                raise ValueError(
                    "All parameters' 'clip_norm' of a same group should be the same"
                )
F
fengjiayi 已提交
307

C
chengduo 已提交
308 309 310 311 312 313
        merge_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            merge_grad = layers.merge_selected_rows(grad)
            merge_grad = layers.get_tensor_from_selected_rows(merge_grad)

        square = layers.square(merge_grad)
P
phlrain 已提交
314
        local_norm_var = layers.reduce_sum(input=square)
F
update  
fengjiayi 已提交
315
        context[self.group_name].append(local_norm_var)
F
fengjiayi 已提交
316

F
update  
fengjiayi 已提交
317
        self.context = context
318

Y
yuyang18 已提交
319
    def _create_operators(self, param, grad):
F
update  
fengjiayi 已提交
320 321 322
        group_scale_name = self.group_name + "_scale"
        if group_scale_name not in self.context:
            group_norm_var = layers.sums(input=self.context[self.group_name])
T
tensor-tang 已提交
323
            group_norm_var = layers.sqrt(x=group_norm_var)
F
update  
fengjiayi 已提交
324 325 326
            clip_var = self.context[self.group_name + "_clip"]
            group_scale_var = layers.elementwise_div(
                x=clip_var,
F
fengjiayi 已提交
327
                y=layers.elementwise_max(
F
update  
fengjiayi 已提交
328
                    x=clip_var, y=group_norm_var))
329
            assert group_scale_var.shape == (1, )
F
update  
fengjiayi 已提交
330
            self.context[group_scale_name] = group_scale_var
F
fengjiayi 已提交
331

F
update  
fengjiayi 已提交
332 333
        new_grad = layers.elementwise_mul(
            x=grad, y=self.context[group_scale_name])
C
chengduo 已提交
334

335
        return param, new_grad
F
fengjiayi 已提交
336 337


F
fengjiayi 已提交
338
def set_gradient_clip(clip, param_list=None, program=None):
F
fengjiayi 已提交
339
    """
340 341 342 343 344 345 346 347 348 349
    To specify parameters that require gradient clip.

    Args:
        clip(BaseGradientClipAttr): An instance of some derived class of BaseGradientClipAttr,
                which describes the type and detailed attributes of required gradient clip.
        param_list(list(Variable)): Parameters that require gradient clip.
                It can be a list of parameter or a list of parameter's name.
                When it's None, all parameters in the program will be included.
        program(Program): The program where parameters are.
                Will be the default main program when assigned with None.
F
fengjiayi 已提交
350
    """
F
fengjiayi 已提交
351 352 353 354
    if not isinstance(clip, BaseGradientClipAttr):
        raise TypeError(
            "'clip' should be an instance of BaseGradientClipAttr's derived class"
        )
F
fengjiayi 已提交
355 356 357 358
    if program is None:
        program = framework.default_main_program()
    if param_list is None:
        param_list = program.block(0).all_parameters()
359
    if all(isinstance(elem, six.string_types) for elem in param_list):
F
fengjiayi 已提交
360 361 362 363 364 365 366
        param_list = [program.block(0).var(elem) for elem in param_list]
    if not all(isinstance(elem, framework.Parameter) for elem in param_list):
        raise TypeError(
            "'param_list' should be a list of Parameter or basestring(parameter's name)."
        )

    for param in param_list:
F
fengjiayi 已提交
367
        param.gradient_clip_attr = copy.deepcopy(clip)
F
fengjiayi 已提交
368 369


370
def append_gradient_clip_ops(param_grads):
Y
Yu Yang 已提交
371
    context = dict()
372 373 374
    for p, g in param_grads:
        if g is None:
            continue
X
Xin Pan 已提交
375 376
        with p.block.program._optimized_guard(
            [p, g]), framework.name_scope('append_clip'):
Y
yuyang18 已提交
377 378 379 380 381 382 383
            clip_attr = getattr(p, 'gradient_clip_attr', NullGradientClipAttr())
            if clip_attr is None:
                clip_attr = NullGradientClipAttr()
            if not isinstance(clip_attr, BaseGradientClipAttr):
                raise TypeError(
                    "clip attribute should be an instance of BaseGradientClipAttr"
                )
Y
Yu Yang 已提交
384

Y
yuyang18 已提交
385
            clip_attr._process_context(context=context, param=p, grad=g)
Y
yuyang18 已提交
386 387

    res = []
388 389 390
    for p, g in param_grads:
        if g is None:
            continue
X
Xin Pan 已提交
391 392
        with p.block.program._optimized_guard(
            [p, g]), framework.name_scope('append_graident_clip'):
Y
yuyang18 已提交
393
            res.append(clip_attr._create_operators(param=p, grad=g))
Y
Yu Yang 已提交
394

Y
yuyang18 已提交
395
    return res
Y
Yu Yang 已提交
396 397 398


ClipByValue = GradientClipByValue
F
fengjiayi 已提交
399 400
ClipByNorm = GradientClipByNorm
ClipByGlobalNorm = GradientClipByGlobalNorm