infrt_api.cc 11.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/infrt/api/infrt_api.h"

#include <llvm/ADT/SmallVector.h>
#include <llvm/Support/DynamicLibrary.h>
#include <mlir/Dialect/StandardOps/IR/Ops.h>
W
Wilber 已提交
20
#include <mlir/IR/BuiltinOps.h>
Y
Yan Chunwei 已提交
21
#include <mlir/Parser.h>
W
Wilber 已提交
22 23
#include <mlir/Pass/PassManager.h>
#include <mlir/Transforms/Passes.h>
Y
Yan Chunwei 已提交
24 25 26 27

#include <unordered_map>
#include <vector>

28
#include "paddle/infrt/backends/host/phi_allocator.h"
Y
Yan Chunwei 已提交
29 30
#include "paddle/infrt/common/global.h"
#include "paddle/infrt/dialect/dense_tensor.h"
31
#include "paddle/infrt/dialect/infrt/ir/infrt_dialect.h"
32
#include "paddle/infrt/dialect/infrt/pass/infrt_op_fuse_pass.h"
33
#include "paddle/infrt/dialect/infrt/pass/infrt_weights_unfold_pass.h"
Y
Yan Chunwei 已提交
34
#include "paddle/infrt/dialect/mlir_loader.h"
35 36
#include "paddle/infrt/dialect/phi/ir/phi_base.h"
#include "paddle/infrt/dialect/phi/pass/phi_op_convert_pass.h"
Y
Yan Chunwei 已提交
37 38 39 40 41
#include "paddle/infrt/host_context/core_runtime.h"
#include "paddle/infrt/host_context/kernel_registry.h"
#include "paddle/infrt/host_context/mlir_function_executable.h"
#include "paddle/infrt/host_context/mlir_to_runtime_translate.h"
#include "paddle/infrt/host_context/op_executable.h"
42
#include "paddle/infrt/host_context/paddle_mlir.h"
Y
Yan Chunwei 已提交
43 44 45
#include "paddle/infrt/host_context/value.h"
#include "paddle/infrt/kernel/basic_kernels.h"
#include "paddle/infrt/kernel/control_flow_kernels.h"
46 47 48
#include "paddle/infrt/kernel/phi/dense_tensor_kernels.h"
#include "paddle/infrt/kernel/phi/infershaped/infershaped_kernel_launchers.h"
#include "paddle/infrt/kernel/phi/registry.h"
Y
Yan Chunwei 已提交
49 50 51 52 53
#include "paddle/infrt/kernel/tensor_kernels.h"
#include "paddle/infrt/kernel/tensor_shape_kernels.h"
#include "paddle/infrt/kernel/test_kernels.h"
#include "paddle/infrt/tensor/tensor_map.h"

54
#if defined(INFRT_WITH_GPU) && defined(INFRT_WITH_TRT)
W
Wilber 已提交
55 56 57 58 59
#include "paddle/infrt/dialect/tensorrt/trt_graph_fuse_pass.h"
#include "paddle/infrt/dialect/tensorrt/trt_graph_split_pass.h"
#include "paddle/infrt/dialect/tensorrt/trt_op_converter_pass.h"
#include "paddle/infrt/dialect/tensorrt/trt_op_teller_pass.h"
#include "paddle/infrt/dialect/tensorrt/trt_type_convert_pass.h"
60
#include "paddle/infrt/kernel/tensorrt/registry.h"
61 62
#endif

Y
Yan Chunwei 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
using namespace infrt::host_context;  // NOLINT
using namespace infrt::tensor;        // NOLINT
using namespace infrt::tensor;        // NOLINT

namespace infrt {

template <typename T>
std::string DumpToString(T& op) {  // NOLINT
  std::string buffer;
  llvm::raw_string_ostream os(buffer);
  op.print(os);
  os.flush();
  return buffer;
}

struct MlirToRuntimeTranslator::Impl {
  mlir::ModuleOp module;
  // The runtime for a function call.
  CoreRuntimeBuilder* runtime{};

  // The current working op, the translator process the ops one by one, each
  // time it updates `cur_op` here to current op
  // working on.
  OpExecutableBuilder* cur_op{};

  // record the current function name.
  std::string cur_func_name;

  // Name to function definitions.
  std::unordered_map<std::string, mlir::FuncOp> func_defs;

  // Map from an operation to its results.
  std::unordered_map<const mlir::Operation*, std::vector<ValueRef>> op_results;
  llvm::DenseMap<mlir::Value, ValueRef> value_map;
};

/**
 * Execute the mlir program in predict mode.
 */
class PredictExecutor : public MlirToRuntimeTranslator {
 public:
  CoreRuntimeBuilder core_runtime;

  PredictExecutor(mlir::ModuleOp module,
                  KernelRegistry* registry,
108
                  ::infrt::phi::DenseTensorMap&& map)
Y
Yan Chunwei 已提交
109 110 111 112
      : MlirToRuntimeTranslator(module, &core_runtime),
        core_runtime(registry),
        registry_(registry) {
    CHECK(registry_);
113
    Init(std::move(map));
Y
Yan Chunwei 已提交
114 115 116 117 118 119 120 121 122 123
  }

  void Run() {
    auto arguments = llvm::makeArrayRef(arguments_);
    auto results = llvm::makeMutableArrayRef(results_.begin(), results_.size());
    function_executable_->Execute(arguments, results);
  }

  int GetInputNum() { return inputs_.size(); }

124
  ::phi::DenseTensor* GetInput(int i) { return inputs_[i]; }
Y
Yan Chunwei 已提交
125 126 127

  int GetOutputNum() { return outputs_.size(); }

128
  ::phi::DenseTensor* GetOutput(int i) { return outputs_[i]; }
Y
Yan Chunwei 已提交
129 130

 private:
131
  void Init(::infrt::phi::DenseTensorMap&& map) {
Y
Yan Chunwei 已提交
132 133 134
    EmitFunctions();
    llvm::Optional<mlir::FuncOp> predict_func_ = llvm::None;
    for (auto func_op : impl_->module.getOps<mlir::FuncOp>()) {
135
      if (func_op.getName().str() != "main_graph") continue;
Y
Yan Chunwei 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148
      predict_func_ = func_op;
      break;
    }
    if (!predict_func_) {
      std::cout << "ERROR: init failed, no predict function found in mlir."
                << std::endl;
      return;
    }
    auto& predict_func = predict_func_.getValue();
    function_executable_ =
        new MlirFunctionExecutable(predict_func, registry_, impl_->func_defs);

    // process parammeters
149 150
    VLOG(3) << "Arguments num of predict func: "
            << predict_func.getNumArguments();
Y
Yan Chunwei 已提交
151 152 153 154
    for (size_t i = 0; i < predict_func.getNumArguments(); ++i) {
      auto arg = predict_func.getArgument(i);
      auto type = arg.getType();
      // this param is TensorMap
155 156
      if (type.isa<::infrt::phi::DenseTensorMapType>()) {
        auto* value = new host_context::Value(std::move(map));
Y
Yan Chunwei 已提交
157 158
        arguments_.push_back(value);
        AddValue(predict_func.getArgument(i), value);
159
      } else if (type.isa<::infrt::DenseTensorType>()) {
Y
Yan Chunwei 已提交
160
        // this param is an input Tensor
161
        auto dht = ::phi::DenseTensor();
Y
Yan Chunwei 已提交
162 163
        auto* value = new host_context::Value(std::move(dht));
        arguments_.push_back(value);
164 165 166
        inputs_.push_back(&(value->get<::phi::DenseTensor>()));
      } else {
        llvm_unreachable("The input type has not been supported by predictor.");
Y
Yan Chunwei 已提交
167 168 169 170 171
      }
    }

    // process results
    auto& last_op = predict_func.front().back();
172
    if (last_op.getName().getStringRef() == "infrt.return") {
Y
Yan Chunwei 已提交
173
      for (size_t i = 0; i < last_op.getNumOperands(); ++i) {
174 175 176 177 178 179 180 181 182 183 184 185
        auto operand = last_op.getOperand(i);
        if (operand.getType().isa<::infrt::DenseTensorType>()) {
          auto r = impl_->value_map.try_emplace(
              operand, ValueRef(new host_context::Value(::phi::DenseTensor())));
          CHECK(r.second) << "Duplicate add mlir value ["
                          << DumpToString(operand) << "]";
          auto* value = r.first->second.get();
          results_.push_back(ValueRef(value));
          outputs_.push_back(&(value->get<::phi::DenseTensor>()));
        } else {
          llvm_unreachable("infrt.return only supports DenseTensor now.");
        }
Y
Yan Chunwei 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
      }
    }
  }

 protected:
  std::unordered_map<std::string, mlir::FuncOp> func_def_table;

  void EmitFunction(mlir::FuncOp op) override {
    CHECK(!impl_->func_defs.count(op.getName().str()))
        << "Duplicate function defition found for function ["
        << op.getName().str();
    impl_->func_defs.emplace(op.getName().str(), op);
  }

 private:
  KernelRegistry* registry_{};
  MlirFunctionExecutable* function_executable_;
203
  llvm::SmallVector<::phi::DenseTensor*, 1> inputs_;
Y
Yan Chunwei 已提交
204
  llvm::SmallVector<host_context::Value*, 2> arguments_;
205
  llvm::SmallVector<::phi::DenseTensor*, 1> outputs_;
Y
Yan Chunwei 已提交
206 207 208
  llvm::SmallVector<ValueRef, 1> results_;
};

209
std::unique_ptr<InfRtPredictor> CreateInfRtPredictor(
Y
Yan Chunwei 已提交
210
    const InfRtConfig& config) {
211
  auto x = std::make_unique<InfRtPredictor>();
Y
Yan Chunwei 已提交
212 213 214 215 216 217
  x->Init(config);
  return x;
}

struct InfRtPredictor::Impl {
  std::unique_ptr<PredictExecutor> executor;
218
  MLIRModelGenImpl module_gen_;
Y
Yan Chunwei 已提交
219 220 221 222 223 224 225 226
};

InfRtPredictor::InfRtPredictor() : impl_(new Impl) {}
InfRtPredictor::~InfRtPredictor() {}

void InfRtPredictor::Run() { impl_->executor->Run(); }

int InfRtPredictor::Init(const InfRtConfig& config) {
227
  mlir::MLIRContext* context = ::infrt::Global::getMLIRContext();
Y
Yan Chunwei 已提交
228 229 230 231 232 233 234 235

  KernelRegistry* registry = new KernelRegistry();

  kernel::RegisterBasicKernels(registry);
  kernel::RegisterTestKernels(registry);
  kernel::RegisterTensorShapeKernels(registry);
  kernel::RegisterTensorKernels(registry);
  kernel::RegisterControlFlowKernels(registry);
236 237 238 239 240 241 242 243
#ifdef INFRT_WITH_PHI
  kernel::RegisterPhiKernels(registry);
  kernel::RegisterInferShapeLaunchers(registry);
#if defined(INFRT_WITH_GPU) && defined(INFRT_WITH_TRT)
  kernel::RegisterTrtKernels(registry);
#endif  // INFRT_WITH_GPU && INFRT_WITH_TRT
#endif

W
Wilber 已提交
244 245 246 247 248 249 250 251
  mlir::ModuleOp module_op;
  if (config.tensorrt_enabled()) {
    module_op = impl_->module_gen_.ImportPaddleModel(
        config.model_dir(), config.param_dir(), false);
  } else {
    module_op = impl_->module_gen_.ImportPaddleModel(config.model_dir(),
                                                     config.param_dir());
  }
252 253 254

  context->loadAllAvailableDialects();
  ::mlir::PassManager pm(context);
W
Wilber 已提交
255 256 257
  ::mlir::OpPassManager& pass_manager = pm.nest<::mlir::FuncOp>();
  if (config.tensorrt_enabled()) {
    pass_manager.addPass(::infrt::CreateInfrtWeightsUnfoldPass());
258
#if defined(INFRT_WITH_GPU) && defined(INFRT_WITH_TRT)
W
Wilber 已提交
259 260 261 262 263
    pass_manager.addPass(::infrt::trt::CreateTrtOpTellerPass());
    pass_manager.addPass(::infrt::trt::CreateTrtGraphFusePass());
    pass_manager.addPass(::infrt::trt::CreateTrtGraphSplitPass(1));
    pass_manager.addPass(::infrt::trt::CreateTrtOpConverterPass());
    pass_manager.addPass(::infrt::trt::CreateTrtTypeConvertPass());
264
#endif
W
Wilber 已提交
265 266 267 268 269 270
    pass_manager.addPass(::mlir::createCanonicalizerPass());
  } else {
    std::vector<::infrt::Place> valid_places = {
        {::infrt::TargetType::CPU,
         ::infrt::PrecisionType::FLOAT32,
         ::infrt::LayoutType::NCHW}};
271 272 273 274 275 276
    if (config.gpu_enabled()) {
      valid_places.insert(valid_places.begin(),
                          ::infrt::Place(::infrt::TargetType::GPU,
                                         ::infrt::PrecisionType::FLOAT32,
                                         ::infrt::LayoutType::NCHW));
    }
W
Wilber 已提交
277 278 279
    pass_manager.addPass(CreatePhiOpCvtPass(valid_places));
    pass_manager.addPass(CreateInfrtOpFusePass());
  }
280 281 282 283 284 285 286
  if (mlir::failed(pm.run(module_op))) {
    std::cout << "\npass failed!\n" << std::endl;
    return 4;
  }
#ifndef NDEBUG
  module_op.dump();
#endif  // NDEBUG
Y
Yan Chunwei 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

  // load extra shared library
  for (const std::string& lib_path : config.shared_libs()) {
    std::string err;
    llvm::sys::DynamicLibrary dynLib =
        llvm::sys::DynamicLibrary::getPermanentLibrary(lib_path.c_str(), &err);
    if (!dynLib.isValid()) {
      llvm::errs() << "Load shared library failed. Error: " << err << "\n";
      return 1;
    }
    if (auto reg_sym = dynLib.SearchForAddressOfSymbol("RegisterKernels")) {
      auto reg_func = reinterpret_cast<void (*)(KernelRegistry*)>(reg_sym);
      reg_func(registry);
    } else {
      llvm::outs() << "Symbol \"RegisterKernels\" not found in \"" << lib_path
                   << "\". Skip.\n";
    }
  }

  // Load params
307 308 309 310 311 312 313 314 315 316 317 318
  if (config.gpu_enabled() && !config.tensorrt_enabled()) {
    auto tensor_map = ::infrt::kernel::phi::LoadCombinedParamsToGpu(
        config.model_dir(), config.param_dir());
    impl_->executor.reset(
        new PredictExecutor(module_op, registry, std::move(tensor_map)));

  } else {
    auto tensor_map = ::infrt::kernel::phi::LoadCombinedParameters(
        config.model_dir(), config.param_dir());
    impl_->executor.reset(
        new PredictExecutor(module_op, registry, std::move(tensor_map)));
  }
Y
Yan Chunwei 已提交
319 320 321 322 323 324

  return 0;
}

int InfRtPredictor::GetInputNum() { return impl_->executor->GetInputNum(); }

325
::phi::DenseTensor* InfRtPredictor::GetInput(int i) {
Y
Yan Chunwei 已提交
326 327 328 329 330
  return impl_->executor->GetInput(i);
}

int InfRtPredictor::GetOutputNum() { return impl_->executor->GetOutputNum(); }

331
::phi::DenseTensor* InfRtPredictor::GetOutput(int i) {
Y
Yan Chunwei 已提交
332 333 334 335
  return impl_->executor->GetOutput(i);
}

}  // namespace infrt