infrt_api.cc 10.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/infrt/api/infrt_api.h"

#include <llvm/ADT/SmallVector.h>
#include <llvm/Support/DynamicLibrary.h>
#include <mlir/Dialect/StandardOps/IR/Ops.h>
#include <mlir/Parser.h>

#include <unordered_map>
#include <vector>

25 26
#include "mlir/Pass/PassManager.h"
#include "paddle/infrt/backends/host/phi_allocator.h"
Y
Yan Chunwei 已提交
27 28
#include "paddle/infrt/common/global.h"
#include "paddle/infrt/dialect/dense_tensor.h"
29
#include "paddle/infrt/dialect/infrt/ir/infrt_dialect.h"
30
#include "paddle/infrt/dialect/infrt/pass/infrt_op_fuse_pass.h"
Y
Yan Chunwei 已提交
31
#include "paddle/infrt/dialect/mlir_loader.h"
32 33
#include "paddle/infrt/dialect/phi/ir/phi_base.h"
#include "paddle/infrt/dialect/phi/pass/phi_op_convert_pass.h"
Y
Yan Chunwei 已提交
34 35 36 37 38
#include "paddle/infrt/host_context/core_runtime.h"
#include "paddle/infrt/host_context/kernel_registry.h"
#include "paddle/infrt/host_context/mlir_function_executable.h"
#include "paddle/infrt/host_context/mlir_to_runtime_translate.h"
#include "paddle/infrt/host_context/op_executable.h"
39
#include "paddle/infrt/host_context/paddle_mlir.h"
Y
Yan Chunwei 已提交
40 41 42
#include "paddle/infrt/host_context/value.h"
#include "paddle/infrt/kernel/basic_kernels.h"
#include "paddle/infrt/kernel/control_flow_kernels.h"
43 44 45
#include "paddle/infrt/kernel/phi/dense_tensor_kernels.h"
#include "paddle/infrt/kernel/phi/infershaped/infershaped_kernel_launchers.h"
#include "paddle/infrt/kernel/phi/registry.h"
Y
Yan Chunwei 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
#include "paddle/infrt/kernel/tensor_kernels.h"
#include "paddle/infrt/kernel/tensor_shape_kernels.h"
#include "paddle/infrt/kernel/test_kernels.h"
#include "paddle/infrt/tensor/tensor_map.h"

using namespace infrt::host_context;  // NOLINT
using namespace infrt::tensor;        // NOLINT
using namespace infrt::tensor;        // NOLINT

namespace infrt {

template <typename T>
std::string DumpToString(T& op) {  // NOLINT
  std::string buffer;
  llvm::raw_string_ostream os(buffer);
  op.print(os);
  os.flush();
  return buffer;
}

struct MlirToRuntimeTranslator::Impl {
  mlir::ModuleOp module;
  // The runtime for a function call.
  CoreRuntimeBuilder* runtime{};

  // The current working op, the translator process the ops one by one, each
  // time it updates `cur_op` here to current op
  // working on.
  OpExecutableBuilder* cur_op{};

  // record the current function name.
  std::string cur_func_name;

  // Name to function definitions.
  std::unordered_map<std::string, mlir::FuncOp> func_defs;

  // Map from an operation to its results.
  std::unordered_map<const mlir::Operation*, std::vector<ValueRef>> op_results;
  llvm::DenseMap<mlir::Value, ValueRef> value_map;
};

/**
 * Execute the mlir program in predict mode.
 */
class PredictExecutor : public MlirToRuntimeTranslator {
 public:
  CoreRuntimeBuilder core_runtime;

  PredictExecutor(mlir::ModuleOp module,
                  KernelRegistry* registry,
96
                  ::infrt::phi::DenseTensorMap&& map)
Y
Yan Chunwei 已提交
97 98 99 100
      : MlirToRuntimeTranslator(module, &core_runtime),
        core_runtime(registry),
        registry_(registry) {
    CHECK(registry_);
101
    Init(std::move(map));
Y
Yan Chunwei 已提交
102 103 104 105 106 107 108 109 110 111
  }

  void Run() {
    auto arguments = llvm::makeArrayRef(arguments_);
    auto results = llvm::makeMutableArrayRef(results_.begin(), results_.size());
    function_executable_->Execute(arguments, results);
  }

  int GetInputNum() { return inputs_.size(); }

112
  ::phi::DenseTensor* GetInput(int i) { return inputs_[i]; }
Y
Yan Chunwei 已提交
113 114 115

  int GetOutputNum() { return outputs_.size(); }

116
  ::phi::DenseTensor* GetOutput(int i) { return outputs_[i]; }
Y
Yan Chunwei 已提交
117 118

 private:
119
  void Init(::infrt::phi::DenseTensorMap&& map) {
Y
Yan Chunwei 已提交
120 121 122
    EmitFunctions();
    llvm::Optional<mlir::FuncOp> predict_func_ = llvm::None;
    for (auto func_op : impl_->module.getOps<mlir::FuncOp>()) {
123
      if (func_op.getName().str() != "main_graph") continue;
Y
Yan Chunwei 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136
      predict_func_ = func_op;
      break;
    }
    if (!predict_func_) {
      std::cout << "ERROR: init failed, no predict function found in mlir."
                << std::endl;
      return;
    }
    auto& predict_func = predict_func_.getValue();
    function_executable_ =
        new MlirFunctionExecutable(predict_func, registry_, impl_->func_defs);

    // process parammeters
137 138
    VLOG(3) << "Arguments num of predict func: "
            << predict_func.getNumArguments();
Y
Yan Chunwei 已提交
139 140 141 142
    for (size_t i = 0; i < predict_func.getNumArguments(); ++i) {
      auto arg = predict_func.getArgument(i);
      auto type = arg.getType();
      // this param is TensorMap
143 144
      if (type.isa<::infrt::phi::DenseTensorMapType>()) {
        auto* value = new host_context::Value(std::move(map));
Y
Yan Chunwei 已提交
145 146
        arguments_.push_back(value);
        AddValue(predict_func.getArgument(i), value);
147
      } else if (type.isa<::infrt::DenseTensorType>()) {
Y
Yan Chunwei 已提交
148
        // this param is an input Tensor
149
        auto dht = ::phi::DenseTensor();
Y
Yan Chunwei 已提交
150 151
        auto* value = new host_context::Value(std::move(dht));
        arguments_.push_back(value);
152 153 154
        inputs_.push_back(&(value->get<::phi::DenseTensor>()));
      } else {
        llvm_unreachable("The input type has not been supported by predictor.");
Y
Yan Chunwei 已提交
155 156 157 158 159
      }
    }

    // process results
    auto& last_op = predict_func.front().back();
160
    if (last_op.getName().getStringRef() == "infrt.return") {
Y
Yan Chunwei 已提交
161
      for (size_t i = 0; i < last_op.getNumOperands(); ++i) {
162 163 164 165 166 167 168 169 170 171 172 173
        auto operand = last_op.getOperand(i);
        if (operand.getType().isa<::infrt::DenseTensorType>()) {
          auto r = impl_->value_map.try_emplace(
              operand, ValueRef(new host_context::Value(::phi::DenseTensor())));
          CHECK(r.second) << "Duplicate add mlir value ["
                          << DumpToString(operand) << "]";
          auto* value = r.first->second.get();
          results_.push_back(ValueRef(value));
          outputs_.push_back(&(value->get<::phi::DenseTensor>()));
        } else {
          llvm_unreachable("infrt.return only supports DenseTensor now.");
        }
Y
Yan Chunwei 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
      }
    }
  }

 protected:
  std::unordered_map<std::string, mlir::FuncOp> func_def_table;

  void EmitFunction(mlir::FuncOp op) override {
    CHECK(!impl_->func_defs.count(op.getName().str()))
        << "Duplicate function defition found for function ["
        << op.getName().str();
    impl_->func_defs.emplace(op.getName().str(), op);
  }

 private:
  KernelRegistry* registry_{};
  MlirFunctionExecutable* function_executable_;
191
  llvm::SmallVector<::phi::DenseTensor*, 1> inputs_;
Y
Yan Chunwei 已提交
192
  llvm::SmallVector<host_context::Value*, 2> arguments_;
193
  llvm::SmallVector<::phi::DenseTensor*, 1> outputs_;
Y
Yan Chunwei 已提交
194 195 196
  llvm::SmallVector<ValueRef, 1> results_;
};

197
std::unique_ptr<InfRtPredictor> CreateInfRtPredictor(
Y
Yan Chunwei 已提交
198
    const InfRtConfig& config) {
199
  auto x = std::make_unique<InfRtPredictor>();
Y
Yan Chunwei 已提交
200 201 202 203 204 205
  x->Init(config);
  return x;
}

struct InfRtPredictor::Impl {
  std::unique_ptr<PredictExecutor> executor;
206
  MLIRModelGenImpl module_gen_;
Y
Yan Chunwei 已提交
207 208 209 210 211 212 213 214
};

InfRtPredictor::InfRtPredictor() : impl_(new Impl) {}
InfRtPredictor::~InfRtPredictor() {}

void InfRtPredictor::Run() { impl_->executor->Run(); }

int InfRtPredictor::Init(const InfRtConfig& config) {
215
  mlir::MLIRContext* context = ::infrt::Global::getMLIRContext();
Y
Yan Chunwei 已提交
216 217 218 219 220 221 222 223

  KernelRegistry* registry = new KernelRegistry();

  kernel::RegisterBasicKernels(registry);
  kernel::RegisterTestKernels(registry);
  kernel::RegisterTensorShapeKernels(registry);
  kernel::RegisterTensorKernels(registry);
  kernel::RegisterControlFlowKernels(registry);
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
#ifdef INFRT_WITH_PHI
  kernel::RegisterPhiKernels(registry);
  kernel::RegisterInferShapeLaunchers(registry);
#if defined(INFRT_WITH_GPU) && defined(INFRT_WITH_TRT)
  kernel::RegisterTrtKernels(registry);
#endif  // INFRT_WITH_GPU && INFRT_WITH_TRT
#endif

  auto module_op = impl_->module_gen_.ImportPaddleModel(config.model_dir(),
                                                        config.param_dir());

  context->loadAllAvailableDialects();
  ::mlir::PassManager pm(context);
  ::mlir::OpPassManager& phi_pass_manager = pm.nest<::mlir::FuncOp>();
  std::vector<::infrt::Place> valid_places = {{::infrt::TargetType::CPU,
                                               ::infrt::PrecisionType::FLOAT32,
                                               ::infrt::LayoutType::NCHW}};
241 242
  phi_pass_manager.addPass(CreatePhiOpCvtPass(valid_places));
  phi_pass_manager.addPass(CreateInfrtOpFusePass());
243 244 245 246 247 248 249
  if (mlir::failed(pm.run(module_op))) {
    std::cout << "\npass failed!\n" << std::endl;
    return 4;
  }
#ifndef NDEBUG
  module_op.dump();
#endif  // NDEBUG
Y
Yan Chunwei 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

  // load extra shared library
  for (const std::string& lib_path : config.shared_libs()) {
    std::string err;
    llvm::sys::DynamicLibrary dynLib =
        llvm::sys::DynamicLibrary::getPermanentLibrary(lib_path.c_str(), &err);
    if (!dynLib.isValid()) {
      llvm::errs() << "Load shared library failed. Error: " << err << "\n";
      return 1;
    }
    if (auto reg_sym = dynLib.SearchForAddressOfSymbol("RegisterKernels")) {
      auto reg_func = reinterpret_cast<void (*)(KernelRegistry*)>(reg_sym);
      reg_func(registry);
    } else {
      llvm::outs() << "Symbol \"RegisterKernels\" not found in \"" << lib_path
                   << "\". Skip.\n";
    }
  }

  // Load params
270 271
  auto tensor_map = ::infrt::kernel::phi::LoadCombinedParameters(
      config.model_dir(), config.param_dir());
Y
Yan Chunwei 已提交
272 273 274

  // Create PredictExecutor
  impl_->executor.reset(
275
      new PredictExecutor(module_op, registry, std::move(tensor_map)));
Y
Yan Chunwei 已提交
276 277 278 279 280
  return 0;
}

int InfRtPredictor::GetInputNum() { return impl_->executor->GetInputNum(); }

281
::phi::DenseTensor* InfRtPredictor::GetInput(int i) {
Y
Yan Chunwei 已提交
282 283 284 285 286
  return impl_->executor->GetInput(i);
}

int InfRtPredictor::GetOutputNum() { return impl_->executor->GetOutputNum(); }

287
::phi::DenseTensor* InfRtPredictor::GetOutput(int i) {
Y
Yan Chunwei 已提交
288 289 290 291
  return impl_->executor->GetOutput(i);
}

}  // namespace infrt