cuda_device_function.h 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16

17 18
// NOTE(): support float16 to half in header file.
#define PADDLE_CUDA_FP16
19
#include "paddle/fluid/platform/complex.h"
20
#include "paddle/fluid/platform/float16.h"
21 22 23 24

namespace paddle {
namespace platform {

25 26 27
#ifdef PADDLE_WITH_HIP
#define CREATE_SHFL_MASK(mask, predicate) mask = __ballot((predicate))
#else
28 29 30
#define FULL_WARP_MASK 0xFFFFFFFF
#define CREATE_SHFL_MASK(mask, predicate) \
  mask = __ballot_sync(FULL_WARP_MASK, (predicate))
C
chengduoZH 已提交
31 32
#endif

33
inline static int RoundToPowerOfTwo(int dim) {
34
#ifdef PADDLE_WITH_CUDA
35 36 37 38 39 40 41 42 43 44 45 46 47
  if (dim > 512) {
    return 1024;
  } else if (dim > 256) {
    return 512;
  } else if (dim > 128) {
    return 256;
  } else if (dim > 64) {
    return 128;
  } else if (dim > 32) {
    return 64;
  } else {
    return 32;
  }
48 49 50 51 52 53 54 55 56 57 58
#else  // HIP results in error or nan if > 256
  if (dim > 128) {
    return 256;
  } else if (dim > 64) {
    return 128;
  } else if (dim > 32) {
    return 64;
  } else {
    return 32;
  }
#endif
59 60 61 62 63 64 65 66
}

#define CUDA_LAUNCH_KERNEL_BASE(dim, ...)  \
  case (dim): {                            \
    constexpr auto kPowerOfTwoDim = (dim); \
    __VA_ARGS__;                           \
  } break

67 68 69 70 71 72
#define CUDA_LAUNCH_KERNEL_HELPER(...)          \
  CUDA_LAUNCH_KERNEL_BASE(1024, ##__VA_ARGS__); \
  CUDA_LAUNCH_KERNEL_BASE(512, ##__VA_ARGS__);  \
  CUDA_LAUNCH_KERNEL_BASE(256, ##__VA_ARGS__);  \
  CUDA_LAUNCH_KERNEL_BASE(128, ##__VA_ARGS__);  \
  CUDA_LAUNCH_KERNEL_BASE(64, ##__VA_ARGS__);   \
73 74
  CUDA_LAUNCH_KERNEL_BASE(32, ##__VA_ARGS__);

C
chengduoZH 已提交
75
template <typename T>
C
chengduoZH 已提交
76
__forceinline__ __device__ T CudaShuffleDownSync(unsigned mask, T val,
77 78
                                                 int delta,
                                                 int width = warpSize) {
T
tianshuo78520a 已提交
79
#if defined(PADDLE_WITH_HIP)
C
chengduoZH 已提交
80 81
  return __shfl_down(val, delta, width);
#else
82
  return __shfl_down_sync(mask, val, static_cast<unsigned>(delta), width);
C
chengduoZH 已提交
83
#endif
C
chengduoZH 已提交
84 85
}

86 87 88
template <typename T>
__forceinline__ __device__ T CudaShuffleXorSync(unsigned mask, T val,
                                                int width = warpSize) {
T
tianshuo78520a 已提交
89
#if defined(PADDLE_WITH_HIP)
90 91 92 93 94 95
  return __shfl_xor(val, width);
#else
  return __shfl_xor_sync(mask, val, width);
#endif
}

T
tianshuo78520a 已提交
96
#if defined(PADDLE_WITH_HIP)
97 98 99 100
template <>
__forceinline__ __device__ float16 CudaShuffleDownSync(unsigned mask,
                                                       float16 val, int delta,
                                                       int width) {
101 102
  return float16(__shfl_down(static_cast<float>(val),
                             static_cast<unsigned>(delta), width));
103
}
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

template <>
__forceinline__ __device__ paddle::platform::complex<float> CudaShuffleDownSync(
    unsigned mask, paddle::platform::complex<float> val, int delta, int width) {
  float real = __shfl_down(val.real, delta, width);
  float imag = __shfl_down(val.imag, delta, width);
  return paddle::platform::complex<float>(real, imag);
}

template <>
__forceinline__ __device__ paddle::platform::complex<double>
CudaShuffleDownSync(unsigned mask, paddle::platform::complex<double> val,
                    int delta, int width) {
  double real = __shfl_down(val.real, delta, width);
  double imag = __shfl_down(val.imag, delta, width);
  return paddle::platform::complex<double>(real, imag);
}

122 123 124
template <>
__forceinline__ __device__ float16 CudaShuffleXorSync(unsigned mask,
                                                      float16 val, int width) {
125
  return float16(__shfl_xor(static_cast<float>(val), width));
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
}

template <>
__forceinline__ __device__ paddle::platform::complex<float> CudaShuffleXorSync(
    unsigned mask, paddle::platform::complex<float> val, int width) {
  float real = __shfl_xor(val.real, width);
  float imag = __shfl_xor(val.imag, width);
  return paddle::platform::complex<float>(real, imag);
}

template <>
__forceinline__ __device__ paddle::platform::complex<double> CudaShuffleXorSync(
    unsigned mask, paddle::platform::complex<double> val, int width) {
  double real = __shfl_xor(val.real, width);
  double imag = __shfl_xor(val.imag, width);
  return paddle::platform::complex<double>(real, imag);
142
}
143 144 145 146 147 148 149
#else
template <>
__forceinline__ __device__ float16 CudaShuffleDownSync(unsigned mask,
                                                       float16 val, int delta,
                                                       int width) {
  return float16(__shfl_down_sync(mask, static_cast<half>(val),
                                  static_cast<unsigned>(delta), width));
150
}
151 152

template <>
153 154
__forceinline__ __device__ paddle::platform::complex<float> CudaShuffleDownSync(
    unsigned mask, paddle::platform::complex<float> val, int delta, int width) {
155 156 157 158
  float real = static_cast<float>(__shfl_down_sync(
      mask, static_cast<float>(val.real), static_cast<unsigned>(delta), width));
  float imag = static_cast<float>(__shfl_down_sync(
      mask, static_cast<float>(val.imag), static_cast<unsigned>(delta), width));
159
  return paddle::platform::complex<float>(real, imag);
160 161 162
}

template <>
163 164 165
__forceinline__ __device__ paddle::platform::complex<double>
CudaShuffleDownSync(unsigned mask, paddle::platform::complex<double> val,
                    int delta, int width) {
166 167 168 169 170 171
  double real = static_cast<double>(
      __shfl_down_sync(mask, static_cast<double>(val.real),
                       static_cast<unsigned>(delta), width));
  double imag = static_cast<double>(
      __shfl_down_sync(mask, static_cast<double>(val.imag),
                       static_cast<unsigned>(delta), width));
172
  return paddle::platform::complex<double>(real, imag);
173 174
}

175 176 177 178 179
template <>
__forceinline__ __device__ float16 CudaShuffleXorSync(unsigned mask,
                                                      float16 val, int width) {
  return float16(__shfl_xor_sync(mask, static_cast<half>(val), width));
}
180 181

template <>
182 183
__forceinline__ __device__ paddle::platform::complex<float> CudaShuffleXorSync(
    unsigned mask, paddle::platform::complex<float> val, int width) {
184 185 186 187
  float real = static_cast<float>(
      __shfl_xor_sync(mask, static_cast<float>(val.real), width));
  float imag = static_cast<float>(
      __shfl_xor_sync(mask, static_cast<float>(val.imag), width));
188
  return paddle::platform::complex<float>(real, imag);
189 190 191
}

template <>
192 193
__forceinline__ __device__ paddle::platform::complex<double> CudaShuffleXorSync(
    unsigned mask, paddle::platform::complex<double> val, int width) {
194 195 196 197
  double real = static_cast<double>(
      __shfl_xor_sync(mask, static_cast<double>(val.real), width));
  double imag = static_cast<double>(
      __shfl_xor_sync(mask, static_cast<double>(val.imag), width));
198
  return paddle::platform::complex<double>(real, imag);
199
}
200 201
#endif

C
chengduoZH 已提交
202
template <typename T>
C
chengduoZH 已提交
203 204
__forceinline__ __device__ T CudaShuffleSync(unsigned mask, T val, int src_line,
                                             int width = 32) {
T
tianshuo78520a 已提交
205
#if defined(PADDLE_WITH_HIP)
C
chengduoZH 已提交
206 207
  return __shfl(val, src_line, width);
#else
C
chengduoZH 已提交
208
  return __shfl_sync(mask, val, src_line, width);
209
#endif
C
chengduoZH 已提交
210
}
211 212

template <typename T>
213 214 215 216 217
HOSTDEVICE T Infinity() {
  return INFINITY;
}

template <typename T>
218
__device__ T reduceSum(T val, int tid, int len) {
219 220 221 222 223 224 225 226 227
// NOTE(zcd): The warp size should be taken from the
// parameters of the GPU but not specified as 32 simply.
// To make the reduceSum more efficiently,
// I use Warp-Level Parallelism and assume the Warp size
// is 32 which may be different for different GPU,
// but most card's warp size is 32.
#ifdef PADDLE_WITH_HIP
  const int warpSize = 64;
#else
228
  const int warpSize = 32;
229
#endif
230 231 232 233 234
  __shared__ T shm[warpSize];
  unsigned mask = 0u;
  CREATE_SHFL_MASK(mask, tid < len);

  for (int offset = warpSize / 2; offset > 0; offset /= 2)
C
chengduoZH 已提交
235
    val += platform::CudaShuffleDownSync(mask, val, offset);
236 237

  if (tid < warpSize) shm[tid] = 0;
C
chengduoZH 已提交
238
  __syncthreads();
239 240 241 242 243 244 245 246 247 248 249

  if (tid % warpSize == 0) {
    shm[tid / warpSize] = val;
  }
  __syncthreads();

  CREATE_SHFL_MASK(mask, tid < warpSize);

  if (tid < warpSize) {
    val = shm[tid];
    for (int offset = warpSize / 2; offset > 0; offset /= 2)
C
chengduoZH 已提交
250
      val += platform::CudaShuffleDownSync(mask, val, offset);
251 252 253 254 255 256
  }
  return val;
}

}  // namespace platform
}  // namespace paddle