/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once // NOTE(): support float16 to half in header file. #define PADDLE_CUDA_FP16 #include "paddle/fluid/platform/complex.h" #include "paddle/fluid/platform/float16.h" namespace paddle { namespace platform { #ifdef PADDLE_WITH_HIP #define CREATE_SHFL_MASK(mask, predicate) mask = __ballot((predicate)) #else #define FULL_WARP_MASK 0xFFFFFFFF #define CREATE_SHFL_MASK(mask, predicate) \ mask = __ballot_sync(FULL_WARP_MASK, (predicate)) #endif inline static int RoundToPowerOfTwo(int dim) { #ifdef PADDLE_WITH_CUDA if (dim > 512) { return 1024; } else if (dim > 256) { return 512; } else if (dim > 128) { return 256; } else if (dim > 64) { return 128; } else if (dim > 32) { return 64; } else { return 32; } #else // HIP results in error or nan if > 256 if (dim > 128) { return 256; } else if (dim > 64) { return 128; } else if (dim > 32) { return 64; } else { return 32; } #endif } #define CUDA_LAUNCH_KERNEL_BASE(dim, ...) \ case (dim): { \ constexpr auto kPowerOfTwoDim = (dim); \ __VA_ARGS__; \ } break #define CUDA_LAUNCH_KERNEL_HELPER(...) \ CUDA_LAUNCH_KERNEL_BASE(1024, ##__VA_ARGS__); \ CUDA_LAUNCH_KERNEL_BASE(512, ##__VA_ARGS__); \ CUDA_LAUNCH_KERNEL_BASE(256, ##__VA_ARGS__); \ CUDA_LAUNCH_KERNEL_BASE(128, ##__VA_ARGS__); \ CUDA_LAUNCH_KERNEL_BASE(64, ##__VA_ARGS__); \ CUDA_LAUNCH_KERNEL_BASE(32, ##__VA_ARGS__); template __forceinline__ __device__ T CudaShuffleDownSync(unsigned mask, T val, int delta, int width = warpSize) { #if defined(PADDLE_WITH_HIP) return __shfl_down(val, delta, width); #else return __shfl_down_sync(mask, val, static_cast(delta), width); #endif } template __forceinline__ __device__ T CudaShuffleXorSync(unsigned mask, T val, int width = warpSize) { #if defined(PADDLE_WITH_HIP) return __shfl_xor(val, width); #else return __shfl_xor_sync(mask, val, width); #endif } #if defined(PADDLE_WITH_HIP) template <> __forceinline__ __device__ float16 CudaShuffleDownSync(unsigned mask, float16 val, int delta, int width) { return float16(__shfl_down(static_cast(val), static_cast(delta), width)); } template <> __forceinline__ __device__ paddle::platform::complex CudaShuffleDownSync( unsigned mask, paddle::platform::complex val, int delta, int width) { float real = __shfl_down(val.real, delta, width); float imag = __shfl_down(val.imag, delta, width); return paddle::platform::complex(real, imag); } template <> __forceinline__ __device__ paddle::platform::complex CudaShuffleDownSync(unsigned mask, paddle::platform::complex val, int delta, int width) { double real = __shfl_down(val.real, delta, width); double imag = __shfl_down(val.imag, delta, width); return paddle::platform::complex(real, imag); } template <> __forceinline__ __device__ float16 CudaShuffleXorSync(unsigned mask, float16 val, int width) { return float16(__shfl_xor(static_cast(val), width)); } template <> __forceinline__ __device__ paddle::platform::complex CudaShuffleXorSync( unsigned mask, paddle::platform::complex val, int width) { float real = __shfl_xor(val.real, width); float imag = __shfl_xor(val.imag, width); return paddle::platform::complex(real, imag); } template <> __forceinline__ __device__ paddle::platform::complex CudaShuffleXorSync( unsigned mask, paddle::platform::complex val, int width) { double real = __shfl_xor(val.real, width); double imag = __shfl_xor(val.imag, width); return paddle::platform::complex(real, imag); } #else template <> __forceinline__ __device__ float16 CudaShuffleDownSync(unsigned mask, float16 val, int delta, int width) { return float16(__shfl_down_sync(mask, static_cast(val), static_cast(delta), width)); } template <> __forceinline__ __device__ paddle::platform::complex CudaShuffleDownSync( unsigned mask, paddle::platform::complex val, int delta, int width) { float real = static_cast(__shfl_down_sync( mask, static_cast(val.real), static_cast(delta), width)); float imag = static_cast(__shfl_down_sync( mask, static_cast(val.imag), static_cast(delta), width)); return paddle::platform::complex(real, imag); } template <> __forceinline__ __device__ paddle::platform::complex CudaShuffleDownSync(unsigned mask, paddle::platform::complex val, int delta, int width) { double real = static_cast( __shfl_down_sync(mask, static_cast(val.real), static_cast(delta), width)); double imag = static_cast( __shfl_down_sync(mask, static_cast(val.imag), static_cast(delta), width)); return paddle::platform::complex(real, imag); } template <> __forceinline__ __device__ float16 CudaShuffleXorSync(unsigned mask, float16 val, int width) { return float16(__shfl_xor_sync(mask, static_cast(val), width)); } template <> __forceinline__ __device__ paddle::platform::complex CudaShuffleXorSync( unsigned mask, paddle::platform::complex val, int width) { float real = static_cast( __shfl_xor_sync(mask, static_cast(val.real), width)); float imag = static_cast( __shfl_xor_sync(mask, static_cast(val.imag), width)); return paddle::platform::complex(real, imag); } template <> __forceinline__ __device__ paddle::platform::complex CudaShuffleXorSync( unsigned mask, paddle::platform::complex val, int width) { double real = static_cast( __shfl_xor_sync(mask, static_cast(val.real), width)); double imag = static_cast( __shfl_xor_sync(mask, static_cast(val.imag), width)); return paddle::platform::complex(real, imag); } #endif template __forceinline__ __device__ T CudaShuffleSync(unsigned mask, T val, int src_line, int width = 32) { #if defined(PADDLE_WITH_HIP) return __shfl(val, src_line, width); #else return __shfl_sync(mask, val, src_line, width); #endif } template HOSTDEVICE T Infinity() { return INFINITY; } template __device__ T reduceSum(T val, int tid, int len) { // NOTE(zcd): The warp size should be taken from the // parameters of the GPU but not specified as 32 simply. // To make the reduceSum more efficiently, // I use Warp-Level Parallelism and assume the Warp size // is 32 which may be different for different GPU, // but most card's warp size is 32. #ifdef PADDLE_WITH_HIP const int warpSize = 64; #else const int warpSize = 32; #endif __shared__ T shm[warpSize]; unsigned mask = 0u; CREATE_SHFL_MASK(mask, tid < len); for (int offset = warpSize / 2; offset > 0; offset /= 2) val += platform::CudaShuffleDownSync(mask, val, offset); if (tid < warpSize) shm[tid] = 0; __syncthreads(); if (tid % warpSize == 0) { shm[tid / warpSize] = val; } __syncthreads(); CREATE_SHFL_MASK(mask, tid < warpSize); if (tid < warpSize) { val = shm[tid]; for (int offset = warpSize / 2; offset > 0; offset /= 2) val += platform::CudaShuffleDownSync(mask, val, offset); } return val; } } // namespace platform } // namespace paddle